什么是空芯光纤?光通信领域的新星
在光通信领域,光纤技术一直是连接世界的基石。随着5G网络和算力网络的快速发展,对光纤性能的要求也越来越高。在这样的背景下,空芯光纤作为一种新型光纤技术,因其独特的结构和性能优势,正逐渐成为研究和应用的热点。

什么是空芯光纤?
传统的实芯光纤由纤芯和包层构成,纤芯的折射率大于包层,从而实现光信号的传输。而空芯光纤则颠覆了这一设计,其纤芯为空气,包层为透明材质如二氧化硅。这种设计使得空芯光纤在传输光信号时,具有更低的时延和非线性效应,从而在高速通信领域展现出巨大的潜力。
空芯光纤的发展简史
空芯光纤的研究几乎与实芯光纤同步开始。在1960年代,由于空气的衰减几乎为零,科学家们提出了空芯光纤的概念。然而,随着实芯光纤技术的快速发展,空芯光纤的研究曾一度放缓。直到2020年,英国南安普顿大学将空芯光纤的衰减降至0.28dB/km,这一技术才重新受到关注。
空芯光纤的分类
空芯光纤主要分为两大类:光子带隙光纤和反谐振光纤。光子带隙光纤利用周期性排列的介质材料形成的光子带隙效应来限制光的传输。而反谐振光纤则通过毛细管壁的谐振和反谐振条件来实现导光,这种光纤的制造难度较低,衰减系数也较低。
反谐振光纤的导光原理
反谐振光纤的导光原理与薄膜干涉相似。在这种光纤中,毛细管壁可视作一个法布里-珀罗(F-P)谐振腔。满足谐振条件的光在毛细管壁内发生谐振,透射出去;而不满足谐振条件的光则被管壁反射回空气纤芯中,实现稳定传输。
技术进展
在2024年的OFC会议上,微软宣布其实验室制备出的空芯光纤衰减小于0.11dB/km,这一成果采用了三管嵌套结构,标志着空芯光纤技术的又一重大突破。
空芯光纤以其独特的结构和性能优势,在光通信领域展现出巨大的潜力。随着技术的不断进步和应用的拓展,我们有理由相信,空芯光纤将成为未来光通信网络的重要组成部分,为高速、低时延的通信需求提供强有力的支持。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
