【光学前沿】台积电北美技术论坛:展望半导体技术的未来
在2024年举行的台积电北美技术论坛上,这家全球领先的半导体制造公司展示了其最新的技术突破,这些技术有望推动人工智能(AI)、数据中心和汽车行业的发展。以下是台积电在论坛上揭示的一些关键技术:

一、A16TM技术:提升逻辑密度和效能
台积电宣布了其最新的A16TM技术,这是一项结合了超级电轨(SuperPowerRail)架构和奈米片晶体管的创新技术。预计于2026年量产,A16技术将供电网络移到晶圆背面,从而在晶圆正面释放更多信号网络布局空间。这种设计不仅提升了逻辑密度和效能,还特别适用于需要复杂信号布线和密集供电网络的高效能运算(HPC)产品。与N2P制程相比,A16在相同工作电压下速度提升8-10%,功耗降低15-20%,芯片密度提升高达1.10倍。
二、NanoFlexTM技术:灵活的N2标准组件
台积电即将推出的N2技术将搭配TSMCNanoFlex技术,这项技术为客户提供了灵活的N2标准组件,这些组件是芯片设计的基本构建模块。NanoFlex技术使得设计人员能够在功耗、效能和面积之间取得最佳平衡,为芯片设计带来了新的可能性。
三、N4C技术:降低晶粒成本
台积电还宣布了N4C技术,这是一种先进的技术,延续了N4P技术,预计于2025年量产。N4C技术提供了具有面积效益的基础硅智财和设计法则,与N4P完全兼容,使得客户可以轻松转移到N4C技术。这种技术的晶粒成本降低高达8.5%,为强调价值的产品提供了具有成本效益的选择。
四、CoWoS®、SoIC和TSMC-SoW™:推动AI革命
台积电的CoWoS®技术是AI革命的关键推动技术,它允许客户在单一中介层上并排放置更多的处理器核心和高带宽记忆体(HBM)。此外,台积电的系统整合芯片(SoIC)已成为3D芯片堆栈的领先解决方案。客户越来越倾向于采用CoWoS搭配SoIC及其他组件,以实现最终的系统级封装(SiP)整合。
五、硅光子整合:COUPE™技术
为了支持AI热潮带来的数据传输爆炸性增长,台积电正在研发紧凑型通用光子引擎(COUPE™)技术。COUPE使用SoIC-X芯片堆栈技术将电子裸晶堆栈在光子裸晶之上,为裸晶对裸晶接口提供最低的电阻及更高的能源效率。预计于2025年完成支持小型插拔式连接器的COUPE验证,并于2026年整合CoWoS封装成为共同封装光学组件(CPO)。
六、车用先进封装:满足更高运算能力需求
台积电也在持续满足车用客户对更高运算能力的需求,以符合行车的安全与质量要求。公司正在研发InFO-oS及CoWoS-R解决方案,支持先进驾驶辅助系统(ADAS)、车辆控制及中控计算机等应用,预计于2025年第四季完成AEC-Q100第二级验证。
台积电在北美技术论坛上展示的这些技术,不仅展示了公司在半导体制造领域的领导地位,也为未来的技术发展和行业创新提供了清晰的路线图。随着这些技术的逐步实现和应用,我们有望看到人工智能、数据中心和汽车行业迎来新的突破和发展。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
