硅光子学的未来:台积电、Intel和Global Foundries的竞争与创新
硅光子学的未来:台积电、Intel和GlobalFoundries的竞争与创新
在半导体技术不断进步的今天,硅光子学作为一项革命性技术,正逐渐成为提高数据传输速率、降低功耗的关键。台积电、Intel和Global Foundries作为全球领先的半导体制造商,都在这一领域展开了激烈的竞争与创新。
台积电的硅光子学里程碑
台积电在2024北美技术论坛上展示了其3D光学引擎的路线图,宣布了其硅光子学的发展目标:到2025年完成八通道小型封装热插拔(OSFP)连接器COUPE的验证,并实现1.6Tbps的传输速率。台积电的第二代硅光子技术计划到2026年将COUPE集成到CoWoS封装中,实现共封装光学(CPO),届时传输速率将提升至6.4Tbps,功耗和延迟显著降低。而第三代技术则将COUPE光传输解决方案用于芯片组间的互连,目标传输速率达到12.8Tbps,功耗和延迟进一步降低。
台积电的技术路线图显示了其在硅光子学领域的雄心壮志。通过EIC-on-PIC技术和SoIC-X工艺,台积电不仅提高了连接密度,还显著降低了系统功耗。这些技术的发展,预示着台积电在硅光子学领域的领先地位。
Intel的硅光子学策略
尽管Intel已经出售了其可插拔硅光子收发器模块业务,但他们并未放弃在硅光子学领域的研究。在OFC2024展会上,Intel推出了与CPU共同封装的OCI光计算互连,这是一款4Tbps双向芯片组,集成了激光器、IC和光连接器,可与高带宽需求的CPU、GPU、IPU和SOC共封装。Intel的这一举措显示了其在硅光子学芯片通信技术方面的持续投入和创新。
GlobalFoundries的硅光子学平台
GlobalFoundries也不甘落后,宣布了名为GFFotonix的硅光子学制造平台。该平台集成了光子系统、RF组件和CMOS逻辑芯片,以实现高性能和高带宽。GlobalFoundries与CiscoSystems的合作,旨在为数据中心网络和数据中心互连开发硅光子学解决方案,包括工艺设计套件(PDK)。
台积电、Intel和Global Foundries在硅光子学领域的竞争,不仅推动了技术的发展,也促进了行业的合作。这些公司通过各自的技术和资源,共同推动了硅光子学技术的进步,为未来的数据中心、AI基础设施和高性能计算提供了强大的支持。
随着技术的不断成熟,硅光子学有望成为下一代数据中心和高速通信的核心技术。台积电、Intel和Global Foundries的竞争与合作,将为这一领域带来更多精彩的创新和突破。
在半导体制造领域,精度是决定产品质量的关键因素。欧光科技提供的大口径中心偏差测量仪,专为满足半导体行业的高精度需求而设计。我们的设备能够提供:
高精度测量:确保半导体元件的精确对准和质量控制。
快速响应:缩短生产周期,提高生产效率。
用户友好的操作界面:简化操作流程,减少人为错误。
定制解决方案:根据客户的特定需求提供定制化的测量解决方案
-
红外光学系统常用材料的性能、优势与应用分析
在红外光学系统的构建中,材料的选择至关重要,不同材料的独特性能决定了其在特定场景下的适用性。本文将深入探讨蓝宝石、硅、锗以及硒化锌这四种常用于红外光学系统的材料,解析它们各自的特性、优势以及应用场景。
2025-08-01
-
石墨烯微腔光纤激光传感器:超灵敏气体检测领域的重大突破
在光学检测技术迅猛发展的当下,实现对微量气体的精准检测始终是科研领域的重要研究方向。近日,中国科研团队在《PhotonicsResearch》发表的最新研究成果,为这一领域提供了创新性解决方案——一款基于石墨烯微腔的光纤激光传感器,凭借其独特的消噪设计,将气体检测灵敏度提升至单分子级别的全新高度。
2025-08-01
-
激光加工的精密调控:能量空间分布、时间传递与偏振特性的协同机制
在激光加工领域,功率与波长作为基础参数,为技术应用提供了初始条件。然而,若要实现微米级精密切割、异种金属焊接或纳米级表面纹理制备等高精度加工,需深入探究能量在空间分布、时间传递及矢量方向上的内在规律。这些底层参数共同决定了能量与材料相互作用的方式,最终影响加工精度、效率及质量,是实现高质量激光加工的核心要素。
2025-08-01
-
光学仪器中三类放大倍率及相关光学概念解析
在光学设备和仪器的选型与应用中,设备参数常标注系统放大倍率、光学放大倍率及电子放大倍率等不同数值。这些数值有时差异显著,其背后对应着不同的光学原理与技术逻辑。本文将系统拆解三类放大倍率的区别及其在光学系统中的实际意义,并延伸阐释相关几何光学概念。
2025-07-31