硅光子学的未来:台积电、Intel和Global Foundries的竞争与创新
硅光子学的未来:台积电、Intel和GlobalFoundries的竞争与创新
在半导体技术不断进步的今天,硅光子学作为一项革命性技术,正逐渐成为提高数据传输速率、降低功耗的关键。台积电、Intel和Global Foundries作为全球领先的半导体制造商,都在这一领域展开了激烈的竞争与创新。

台积电的硅光子学里程碑
台积电在2024北美技术论坛上展示了其3D光学引擎的路线图,宣布了其硅光子学的发展目标:到2025年完成八通道小型封装热插拔(OSFP)连接器COUPE的验证,并实现1.6Tbps的传输速率。台积电的第二代硅光子技术计划到2026年将COUPE集成到CoWoS封装中,实现共封装光学(CPO),届时传输速率将提升至6.4Tbps,功耗和延迟显著降低。而第三代技术则将COUPE光传输解决方案用于芯片组间的互连,目标传输速率达到12.8Tbps,功耗和延迟进一步降低。
台积电的技术路线图显示了其在硅光子学领域的雄心壮志。通过EIC-on-PIC技术和SoIC-X工艺,台积电不仅提高了连接密度,还显著降低了系统功耗。这些技术的发展,预示着台积电在硅光子学领域的领先地位。
Intel的硅光子学策略
尽管Intel已经出售了其可插拔硅光子收发器模块业务,但他们并未放弃在硅光子学领域的研究。在OFC2024展会上,Intel推出了与CPU共同封装的OCI光计算互连,这是一款4Tbps双向芯片组,集成了激光器、IC和光连接器,可与高带宽需求的CPU、GPU、IPU和SOC共封装。Intel的这一举措显示了其在硅光子学芯片通信技术方面的持续投入和创新。
GlobalFoundries的硅光子学平台
GlobalFoundries也不甘落后,宣布了名为GFFotonix的硅光子学制造平台。该平台集成了光子系统、RF组件和CMOS逻辑芯片,以实现高性能和高带宽。GlobalFoundries与CiscoSystems的合作,旨在为数据中心网络和数据中心互连开发硅光子学解决方案,包括工艺设计套件(PDK)。
台积电、Intel和Global Foundries在硅光子学领域的竞争,不仅推动了技术的发展,也促进了行业的合作。这些公司通过各自的技术和资源,共同推动了硅光子学技术的进步,为未来的数据中心、AI基础设施和高性能计算提供了强大的支持。
随着技术的不断成熟,硅光子学有望成为下一代数据中心和高速通信的核心技术。台积电、Intel和Global Foundries的竞争与合作,将为这一领域带来更多精彩的创新和突破。
在半导体制造领域,精度是决定产品质量的关键因素。欧光科技提供的大口径中心偏差测量仪,专为满足半导体行业的高精度需求而设计。我们的设备能够提供:
高精度测量:确保半导体元件的精确对准和质量控制。
快速响应:缩短生产周期,提高生产效率。
用户友好的操作界面:简化操作流程,减少人为错误。
定制解决方案:根据客户的特定需求提供定制化的测量解决方案
-
镜头色差成因及校正技术解析:ED镜片与APO复消色差系统
在光学成像领域,色差是影响镜头成像质量的核心问题之一。尤其是在长焦拍摄、广角边缘成像或逆光、大光比等复杂场景下,画面中出现的紫边、绿边等色边现象,以及颜色浸润、边缘模糊等问题,本质上均为色差(ChromaticAberration,简称CA)导致的成像偏差。本文将系统解析色差的物理本质、产生机制,深入探讨普通镜片组合、ED镜片及APO复消色差三种校正方案的技术原理与优劣特性,并澄清行业内关于APO镜头与锐度的认知误区。
2025-12-15
-
无干涉机制赋能宽带片上角动量复用:150纳米带宽芯片技术实现
在信息技术向超高容量、微型化方向持续演进的当下,光的角动量复用技术凭借其物理正交特性,已成为破解数据传输与存储领域性能瓶颈的关键技术路径。然而,传统基于干涉法的探测方案受限于器件体积与带宽特性,难以满足芯片级集成应用的核心需求。近日,一项发表于《Science》的研究提出了无干涉角动量复用创新方案,通过设计新型纳米环孔径结构,成功实现150纳米带宽的片上并行复用,为微型化纳米光子器件的研发与应用开辟了全新路径。
2025-12-15
-
多组间隔镜片镜头的定心装配与空气间隔控制技术
在精密光学镜头(如安防监控镜头、工业检测镜头、高端成像镜头等)中,多组带空气间隔的镜片是实现高清成像的核心结构。镜片光轴的同轴度与空气间隔的精准度直接决定镜头的分辨率、像差校正效果等关键指标——若光轴偏移,会导致成像模糊、畸变;若空气间隔偏离设计值,则会破坏光学系统的共轭关系,影响画质还原。针对这类镜头,数控定心车削技术结合闭环反馈装配体系,已成为实现高精度定心装配与空气间隔控制的主流方案。
2025-12-15
-
放大的自发辐射(ASE)与受激辐射的核心机制及差异解析
在量子电子学与激光物理领域,光辐射机制的特性直接决定了光学器件的性能与应用场景。放大的自发辐射(Amplified Spontaneous Emission,ASE)作为介于自发辐射与受激辐射之间的关键光放大过程,其物理本质与两类基础辐射机制的差异,是理解光电子技术原理的核心前提。本文基于量子光学基本理论,系统梳理三者的物理机制、形成过程及核心差异,为相关领域的理论研究与技术应用提供参考。
2025-12-15
