为什么选择OptiCentric®101中心偏差测量仪?测量精度与效率的完美结合
OptiCentric®101中心偏差测量仪以其卓越的测量精度和快速的测量速度,为光学制造行业带来了革命性的变革。这款仪器不仅能够精确测量镜片的中心偏差,还能高效地完成镜片胶合和镜头装配任务。

一、产品亮点:
1.高精度测量:±0.1µm的可见范围测量精度,确保了测量结果的极致准确。
2.快速测量头:新一代的测量头设计,使得测量头移动速度更快,大幅度减少了测量时间。
3.自动化控制:自动化电脑控制导轨和电子自准直仪,简化了操作流程,提高了工作效率。
4.大功率LED光源:中心波长525nm的光源,提供了稳定而明亮的照明,保证了测量的一致性和可靠性。
二、两种型号,满足不同需求
OptiCentric®101系列提供了两种型号,以满足不同客户的需求:
OptiCentric®101自准直仪可移动式:适合需要频繁移动设备或在不同位置进行测量的客户。
OptiCentric®101M自准直仪固定式:适合固定工作站,需要稳定测量环境的客户。
三、技术规格
1.镜头旋转:空气轴承和镜片自动旋转装置,确保了旋转的平稳性和精确性。
2.被测镜头直径范围:从0.5mm到225mm(镜头组测量)或200mm(单镜片测量),覆盖了广泛的应用场景。
3.最大负载:20kg,足以应对大多数镜头的测量需求。
四、为什么选择OptiCentric®101?
1.行业领先的技术:TRIOPTICSGmbH的创新技术,确保了产品的先进性和可靠性。
2.提高生产效率:快速的测量速度和自动化操作,显著提高了生产效率。
3.卓越的客户服务:我们承诺提供全面的技术支持和客户服务,确保您的投资物有所值。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
