纵向塞曼效应双频激光干涉仪的原理与应用
在现代光学测量领域中,纵向塞曼效应双频激光干涉仪是一种重要的测量工具。它基于独特的物理原理,能够实现高精度的距离测量。

纵向塞曼效应双频激光干涉仪的工作原理如下:纵向塞曼激光器发出左右圆偏振光,经λ/4波片后成为偏振方向相互垂直的同轴双频激光f1和f2。这两束光在分光镜BS处分为两部分,反射部分经检偏器P1形成拍频f2-f1,由光电探测器D1接受,作为系统的参考信号。透射部分在偏振分光镜PBS处按偏振方向分解,一路指向定镜R,频率为f1;另一路指向靶镜M,频率为f2。
当靶镜M移动时,返回光会产生多普勒频移±Δf,加于原频率f2之上。此时,f2+Δf与f1两光束在偏振分光镜PBS汇合,经45°放置的检偏器P2得到含有测量距离信息的拍频信号(f2-f1)±Δf,由光电探测器D2接收,作为测量信号。
在Machelson干涉仪中,靶镜M的移动距离可以通过以下公式计算:L=λ/2*∫_{0}^{t}Δfdt=N*λ/2。其中,λ为激光波长,多普勒频移Δf的积分为条纹数N。减法器S通过[(f2-f2)±Δf,]-(f2-f1)]的运算得到±Δf,进而可以根据上式计算得到测量长度值L。
纵向塞曼效应双频激光干涉仪具有高精度、高稳定性的特点,广泛应用于机械制造、航空航天、半导体等领域的精密测量。它为这些领域的发展提供了重要的技术支持,有助于提高产品质量和生产效率。
纵向塞曼效应双频激光干涉仪是一种先进的光学测量仪器,其原理和应用对于推动科技进步具有重要意义。
-
光学核心度量概念解析:光通量、强度、照度、亮度及立体角体系
在光学领域,“亮”是一个具有多重维度的表述,其背后蕴含着一套精准描述光的产生、传播与接收特性的度量体系。光通量、发光强度、照度、亮度、立体角及投影立体角作为该体系的核心构成,是理解光的物理特性、实现光学应用精准设计的基础。本文将系统拆解这些关键概念,厘清其定义、物理意义及相互关联,为相关领域的研究与实践提供理论支撑。
2026-01-29
-
照明技术核心组件与应用系统专业解析
在现代科技领域,照明技术作为光学工程的重要分支,广泛渗透于精密制造、医疗设备、显微成像、光电测量等诸多行业。其核心目标在于实现对光的高效传导、精准聚焦、灵活控制及均匀化处理,而这一目标的达成,依赖于各类核心光学组件与系统化设计的协同作用。本文将系统解析照明技术中的关键组件、经典照明系统、光谱控制方案及均匀照明实现技术,为相关领域的研究与应用提供专业参考。
2026-01-29
-
非成像光学技术体系及应用研究
非成像光学作为光学领域的重要分支,其核心目标并非实现物象的精准成像,而是通过系统化的光学设计与调控,达成光能的高效利用、均质化分布及定向传输。该技术广泛应用于高端照明设备、太阳能利用、精密仪器等关键领域,凭借对光线传播规律的深度挖掘,为诸多行业的技术升级提供了核心支撑。本文将从均匀照明技术、光源建模方法及复合聚光器设计三大核心维度,系统阐述非成像光学的技术原理、关键器件及应用场景,以期为相关领域的研究与实践提供参考。
2026-01-29
-
重大突破!新型光学钟有望重新定义“秒”,还能助力量子计算
2026年1月26日,德国物理技术联邦研究所(PTB)与泰国计量研究所(NIMT)联合发布一项革命性成果——成功实现一种使用镱-173离子的光学多离子钟。该研究发表于国际顶级期刊《PhysicalReviewLetters》,不仅为重新定义国际单位制(SI)中“秒”的基本单位增添了强力候选,更有望为量子计算、核物理基础研究开辟全新路径。
2026-01-28
