纵向塞曼效应双频激光干涉仪的原理与应用
在现代光学测量领域中,纵向塞曼效应双频激光干涉仪是一种重要的测量工具。它基于独特的物理原理,能够实现高精度的距离测量。
纵向塞曼效应双频激光干涉仪的工作原理如下:纵向塞曼激光器发出左右圆偏振光,经λ/4波片后成为偏振方向相互垂直的同轴双频激光f1和f2。这两束光在分光镜BS处分为两部分,反射部分经检偏器P1形成拍频f2-f1,由光电探测器D1接受,作为系统的参考信号。透射部分在偏振分光镜PBS处按偏振方向分解,一路指向定镜R,频率为f1;另一路指向靶镜M,频率为f2。
当靶镜M移动时,返回光会产生多普勒频移±Δf,加于原频率f2之上。此时,f2+Δf与f1两光束在偏振分光镜PBS汇合,经45°放置的检偏器P2得到含有测量距离信息的拍频信号(f2-f1)±Δf,由光电探测器D2接收,作为测量信号。
在Machelson干涉仪中,靶镜M的移动距离可以通过以下公式计算:L=λ/2*∫_{0}^{t}Δfdt=N*λ/2。其中,λ为激光波长,多普勒频移Δf的积分为条纹数N。减法器S通过[(f2-f2)±Δf,]-(f2-f1)]的运算得到±Δf,进而可以根据上式计算得到测量长度值L。
纵向塞曼效应双频激光干涉仪具有高精度、高稳定性的特点,广泛应用于机械制造、航空航天、半导体等领域的精密测量。它为这些领域的发展提供了重要的技术支持,有助于提高产品质量和生产效率。
纵向塞曼效应双频激光干涉仪是一种先进的光学测量仪器,其原理和应用对于推动科技进步具有重要意义。
-
光子穿透人脑?深层成像技术突破“不可能”之限
大脑作为调控人类思维与行为的核心中枢,其深层运作机制长期以来因组织结构的包裹而难以被解析,宛如一座待解的迷宫。近日,英国格拉斯哥大学研究团队在《Neurophotonics》发表的突破性成果,首次实现光子穿透成人大脑并完成深层成像,一举打破了困扰学界数十年的衰减壁垒,为脑科学研究及临床诊断领域开辟了全新路径。
2025-07-16
-
微型压缩超光谱成像系统的突破性进展,基于单液晶相位延迟器的紧凑化解决方案
超光谱成像技术可捕获物体在连续光谱波段的精细光学信息,在环境监测、医疗诊断、工业检测等领域具有重要应用价值。然而,传统超光谱成像系统往往受限于庞大体积与复杂结构,难以满足便携化、微型化的应用需求。近期,一种基于单液晶相位延迟器的微型压缩超光谱成像系统问世,为解决这一技术难题提供了全新思路
2025-07-16
-
【光学前沿】突破水吸收波段限制,空芯光子晶体光纤实现中红外超短脉冲高效传输
中红外光凭借其独特的光谱特性,在先进光谱学、材料加工、生物医学诊断及遥感等领域具有不可替代的应用价值。长期以来,中红外光的高质量传输受限于材料吸收、衍射及非线性效应等多重因素。近日,中国科研团队在《Optica》期刊发表的最新研究中,通过真空空芯光子晶体光纤技术,成功实现了水吸收波段内宽带100飞秒中红外脉冲的灵活传输,为解决这一技术难题提供了突破性方案。
2025-07-16
-
什么是沙姆镜头?为什么说它是解决倾斜物面成像难题的智慧方案
在工业检测、机器视觉等领域,常常会遇到这样的困扰:当拍摄的物体表面与镜头光轴不垂直,或者物体存在明显高度落差时,成像要么无法整体清晰对焦,要么画面出现奇怪的径向拉伸变形。而沙姆镜头的出现,正是为了破解这类倾斜物面的成像难题。
2025-07-16