什么是光学系统中的视场光阑?深入理解视场光阑成像的关键
在光学设计和分析中,视场光阑的作用至关重要,它决定了光学系统能够成像的空间范围。本文将深入探讨视场光阑的概念、作用以及如何确定和计算。
1.视场光阑的定义
在实际的光学系统中,除了孔径光阑外,还有其他光阑影响着光线的传播。视场光阑是决定光学系统成像范围的主要因素之一。当轴外点发出的光束被透镜或其他光学元件部分遮挡时,只有中间的一部分光线能够通过系统成像。这种遮挡效果导致像面边缘的光照度下降,从而影响成像质量。
2.视场光阑的作用
视场光阑的主要作用是限制通过光学系统的光束。在光学设计中,确定视场光阑的位置和大小对于确保系统能够正确成像至关重要。视场光阑的位置决定了物面上哪些区域能够被成像。
3.确定视场光阑
确定视场光阑的过程涉及分析光学系统中所有可能的光阑,并找出对主光线限制最大的那个光阑。这通常涉及到计算每个光阑在物空间或像空间的像,以及它们对入瞳或出瞳中心的张角。张角最小的光阑像对应的实际光阑就是系统的视场光阑。
4.视场光阑的计算
视场光阑的计算可以通过以下两种情况来考虑:
-视场光阑与像面重合:在这种情况下,像的大小受到视场光阑口径的限制。物方视场可以通过公式计算得出,其中物方视场角2W 与视场光阑的口径和像距有关。
-视场光阑与物面重合:当视场光阑与物面重合时,物方视场可以直接由视场光阑的尺寸计算得到。
5.视场光阑的影响
视场光阑的位置和大小直接影响光学系统的视场角和成像范围。在设计过程中,需要仔细考虑视场光阑的配置,以确保系统能够覆盖所需的视场。
视场光阑是光学设计中的关键概念,它决定了光学系统能够成像的空间范围。通过理解和计算视场光阑,设计师可以优化系统的性能,确保高质量的成像效果。本文提供了对视场光阑的全面介绍,旨在帮助读者更好地理解光学系统中的成像限制和设计原则。
参考书籍:
《工程光学》郁道银,谈恒英
《物理光学与应用光学》石顺祥
《基于Zemax的应用光学教程》施跃春
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30