【光学前沿】光的时间和空间相干性研究:基于迈克耳孙干涉仪
光的相干性是物理光学中至关重要的概念,包括时间相干性和空间相干性,它对于正确理解光的干涉和衍射现象起着关键作用。然而,光的相干性相对抽象,在普通物理光学课程中讲解难度较大。
在光学教科书中,通常通过迈克耳孙干涉实验介绍光的时间相干性,利用杨氏双缝干涉实验讲解光的空间相干性。但迈克耳孙干涉实验在教学中往往侧重干涉条纹的形成原理、特征观察及应用,较少涉及相干特性的分析和测量。实际上,学生在实验中会发现迈克耳孙白光干涉条纹很难调节,这主要是因为白光的相干性差。那么,白光的相干性究竟差到什么程度?又该如何定量测量和表征相干性呢?
为了深入理解这些基本概念和问题,中山大学的研究团队在迈克耳孙干涉实验的基础上进行了深化拓展研究。他们采用迈克耳孙干涉光路,搭配光电探测器和光纤光谱仪,分别测量时域和光谱信号。
在时间相干性方面,一定线宽的准单色光源发出的光可视为有限长度的波列。若同一原子发出的一个波列分成的各分光束经历不同光程后,光程差在波列长度范围内,则两列波可重叠并发生干涉;若光程差超出波列长度范围,则不能发生干涉。通常用相干长度\(L_c\)来表征光的时间相干性,\(L_c\)与光源中心波长的平方成正比,与光源线宽成反比。实验中,通过压电陶瓷位移台带动扫描镜移动,改变两臂光程差,扫描得到干涉信号光强与光程差的关系曲线,其包络线的半高全宽即为光源的相干长度。
在空间相干性方面,它描述的是光场中横向两点在同一时刻光振动的关联程度,与光源的发光尺度有关。发光尺度越大,相干范围孔径角越小。一般用干涉图样的对比度来描述空间相干的程度。在实验中,通过小孔光阑限制扩展光源的发光尺度,可减少相干范围以外光的成分,从而提升干涉条纹的对比度,提高系统的空间相干性。
实验系统由光源、迈克耳孙干涉光路以及信号探测系统三部分组成。光源部分包括LED白光光源(配有不同带宽的滤光片)和LD激光光源等;迈克耳孙干涉光路的扫描镜配有压电位移台;信号探测部分包括光纤光谱仪、光电探测器及数据采集卡等。实验时,先借助激光干涉信号粗调光路准直,再切换白光LED,在光纤光谱仪辅助下定位白光干涉等光程点,并对压电位移台的运行速度进行标定。
通过实验,研究团队得到了以下结果:随着光源的谱宽变窄,相干长度明显变大;对高斯线型光谱,实验测量的相干长度与理论值比较接近,但存在误差。在空间相干性演示中,利用激光光源,加入毛玻璃扩散片后干涉条纹对比度变差,加入小孔光阑后干涉条纹再次出现并越来越清晰,对比度提高;LED白光光源一般认为为非相干光源,在相干孔径角以内的光场空间相干,光路准直不好时可借助小孔光阑提高系统的空间相干性。
综上所述,该实验基于迈克耳孙干涉仪,对光的时间和空间相干特性进行了深入研究,有助于学生深刻理解光的相干性,适用于光学课程教学演示和大学物理实验的拓展研究。
-
无氧铜在精密制造领域的应用研究:材料特性、加工工艺及质量控制
在高端制造业向纳米级精度迈进的进程中,无氧铜以其卓越的物理性能与加工适应性,成为航空航天、半导体、精密机械等领域的关键基础材料。本文系统阐述无氧铜的材料科学特性,剖析从原料提纯到成品检测的全流程制造工艺,探讨精密加工中的技术难点及解决方案,并结合典型应用场景提出定制化加工方案,为相关领域的材料应用提供理论与实践参考。
2025-07-01
-
热调控法制备二维钙钛矿近红外光电探测器的研究进展——面向弱光成像应用的高灵敏度器件设计
二维(2D)铅基钙钛矿材料因强量子限域效应通常具有大于1.6eV的带隙,导致其在近红外(NIR)波段的光吸收效率显著不足,严重制约了该类材料在弱光探测领域的应用。针对这一关键瓶颈,上海大学王生浩团队联合重庆文理学院李璐、程江团队提出热调控结晶策略,成功制备出高结晶度(PEA)₂FA₄Pb₅I₁₆二维钙钛矿薄膜,构建了具有自供电特性的近红外光电探测器。相关成果发表于《AdvancedFunctionalMaterials》,为解决传统二维钙钛矿在弱光环境下的响应不足问题提供了创新性解决方案。
2025-07-01
-
高分辨率成像中莫尔条纹的成因与解决办法
在追求高清画质的时代,相机分辨率越来越高,但拍摄时可能遇到奇怪的波浪状条纹——比如拍格子衬衫、电脑屏幕或建筑外墙时,画面中出现的不规则花纹,这就是摄影中常见的“莫尔条纹”。下面我们用更简单的方式,聊聊它的产生原因和解决办法。
2025-06-30
-
飞秒激光加工新突破:波长调控技术革新表面处理精度
激光波长对材料表面粗糙度的精准调控机制,为高精度微纳加工开辟了新路径。来自能量束加工及应用技术领域的研究团队,通过多波长协同工艺(DWA技术),成功实现了表面光洁度与加工效率的双重优化,相关成果已引发航空航天、半导体等高端制造领域关注。
2025-06-30