【光学前沿】光的时间和空间相干性研究:基于迈克耳孙干涉仪
光的相干性是物理光学中至关重要的概念,包括时间相干性和空间相干性,它对于正确理解光的干涉和衍射现象起着关键作用。然而,光的相干性相对抽象,在普通物理光学课程中讲解难度较大。

在光学教科书中,通常通过迈克耳孙干涉实验介绍光的时间相干性,利用杨氏双缝干涉实验讲解光的空间相干性。但迈克耳孙干涉实验在教学中往往侧重干涉条纹的形成原理、特征观察及应用,较少涉及相干特性的分析和测量。实际上,学生在实验中会发现迈克耳孙白光干涉条纹很难调节,这主要是因为白光的相干性差。那么,白光的相干性究竟差到什么程度?又该如何定量测量和表征相干性呢?
为了深入理解这些基本概念和问题,中山大学的研究团队在迈克耳孙干涉实验的基础上进行了深化拓展研究。他们采用迈克耳孙干涉光路,搭配光电探测器和光纤光谱仪,分别测量时域和光谱信号。
在时间相干性方面,一定线宽的准单色光源发出的光可视为有限长度的波列。若同一原子发出的一个波列分成的各分光束经历不同光程后,光程差在波列长度范围内,则两列波可重叠并发生干涉;若光程差超出波列长度范围,则不能发生干涉。通常用相干长度\(L_c\)来表征光的时间相干性,\(L_c\)与光源中心波长的平方成正比,与光源线宽成反比。实验中,通过压电陶瓷位移台带动扫描镜移动,改变两臂光程差,扫描得到干涉信号光强与光程差的关系曲线,其包络线的半高全宽即为光源的相干长度。
在空间相干性方面,它描述的是光场中横向两点在同一时刻光振动的关联程度,与光源的发光尺度有关。发光尺度越大,相干范围孔径角越小。一般用干涉图样的对比度来描述空间相干的程度。在实验中,通过小孔光阑限制扩展光源的发光尺度,可减少相干范围以外光的成分,从而提升干涉条纹的对比度,提高系统的空间相干性。
实验系统由光源、迈克耳孙干涉光路以及信号探测系统三部分组成。光源部分包括LED白光光源(配有不同带宽的滤光片)和LD激光光源等;迈克耳孙干涉光路的扫描镜配有压电位移台;信号探测部分包括光纤光谱仪、光电探测器及数据采集卡等。实验时,先借助激光干涉信号粗调光路准直,再切换白光LED,在光纤光谱仪辅助下定位白光干涉等光程点,并对压电位移台的运行速度进行标定。
通过实验,研究团队得到了以下结果:随着光源的谱宽变窄,相干长度明显变大;对高斯线型光谱,实验测量的相干长度与理论值比较接近,但存在误差。在空间相干性演示中,利用激光光源,加入毛玻璃扩散片后干涉条纹对比度变差,加入小孔光阑后干涉条纹再次出现并越来越清晰,对比度提高;LED白光光源一般认为为非相干光源,在相干孔径角以内的光场空间相干,光路准直不好时可借助小孔光阑提高系统的空间相干性。
综上所述,该实验基于迈克耳孙干涉仪,对光的时间和空间相干特性进行了深入研究,有助于学生深刻理解光的相干性,适用于光学课程教学演示和大学物理实验的拓展研究。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
