为什么选择非接触式三维光学轮廓仪,该设备有什么的优势?
为什么要选择非接触式三维光学轮廓仪呢?首先,它采用了先进的MWLI®技术,能够进行高精度的非接触式3D形貌测量,避免了传统接触式测量可能对被测物体造成的损伤。这对于一些对表面质量要求极高的物体,如非球面镜片、球面、平面和自由曲面等,尤为重要。
该设备的优势众多。其一,它具有极高的测量精度,再现性≤±50nm(3σ),能够满足您对高精度测量的需求。其二,它具有出色的测量稳定性,Power变化<±20nm(3σ),PV变化<±5nm(3σ),确保测量结果的可靠性。其三,它的测量速度快,例如,测量直径为30mm、Roc为60mm、100points/mm²的物体仅需1:45分钟,大大提高了工作效率。
LUPHOScan260/420HD还具有很强的灵活性。它可以测量各种不同的表面类型,包括透明材料、金属零件和磨砂表面等。对于不常见的表面形状,如平顶或有拐点的轮廓,也能轻松应对。最大测量直径可达420mm,能够满足各种尺寸物体的测量需求。
该系统还具备功能强大的软件模块,LUPHOSoft软件模块可提供对复杂的或不连续光学元件的直接测量,能够对各种特殊形状进行3D面形测量,并包含复杂的数据分析工具,方便您对测量数据进行深入分析。
非接触式轮廓仪LUPHOScan260/420HD凭借其高精度、稳定性、测量速度快和灵活性等优势,为您提供了一种可靠、高效的测量解决方案。选择它,就是选择了品质与卓越,将为您的工作带来极大的便利和价值。
-
激光焊接质量缺陷的系统性分析与工程化解决方案
激光焊接作为高能量密度精密加工技术,在高端制造领域的应用日益广泛。然而,焊接过程中多因素耦合作用易导致质量缺陷,影响产品可靠性与生产效率。本文基于激光焊接工艺特性,从工艺参数、材料特性、设备系统及环境控制等维度,系统剖析焊接不良成因,并提出工程化解决方案,为构建高品质激光焊接生产体系提供理论与实践参考。
2025-06-13
-
五轴精密零件加工中热变形控制的关键技术研究
在航空航天、医疗器械及高端装备制造领域,五轴精密零件的加工精度直接影响产品性能。热变形作为导致加工误差的主要因素之一,其控制技术已成为精密制造领域的研究重点。本文基于热传导理论与切削工艺原理,系统分析五轴加工中热变形的产生机理,从切削参数优化、刀具系统设计、冷却系统构建、环境控制及智能监测五个维度,提出全流程热变形控制策略,为高精密零件加工提供理论与实践参考。
2025-06-13
-
高功率绿光光纤激光器技术原理研究及工程挑战探讨
在精密激光加工领域,随着铜、铝等高反金属材料在电子器件制造、新能源电池焊接及增材制造等场景的广泛应用,高功率绿光光纤激光器的技术研发已成为国际前沿课题。这类材料对1064nm近红外波段激光的吸收率通常低于5%,而对532nm绿光波段的吸收率可达40%以上。这一特性不仅促使加工能效显著提升,更能通过减少飞溅、稳定熔池等优势,满足精密制造对加工质量的严苛要求。基于此,高功率绿光光纤激光器的技术体系构建与工程化突破,正成为推动激光加工技术升级的关键方向。
2025-06-13
-
光谱滤波如何调控光纤激光器中的两类特殊光脉冲共存
在超快激光研究领域,锁模光纤激光器就像一个精密的"光学实验室",能帮助科学家探索光脉冲的复杂变化。近期,西北大学研究团队有了新发现:他们通过光谱滤波技术,首次实现了类噪声脉冲和耗散孤子这两种特性迥异的光脉冲在光纤激光器中稳定共存,并且能灵活调节它们的波长间隔。这项成果为开发多功能激光光源提供了新思路,相关研究发表在《APLPhotonics》期刊上。
2025-06-13