激光扩束镜是什么?它有什么作用?
在激光技术的领域中,激光扩束镜是一种常见而重要的设备。那么,激光扩束镜到底是什么呢?它又有哪些作用呢?
激光扩束镜是一种用于扩大激光光束的设备,它在科学实验、激光测距、激光打印等众多应用中发挥着关键作用。激光扩束透镜可以通过不同的形式实现,如离轴反射、使用几个棱镜扩展光束等,其中最常见的是折射型,光通过透镜折射和透射,使光束在离开时膨胀。

激光扩束镜的主要作用是扩大光束,即扩大激光光斑面积,实现更大面积的光束输出,以适应不同的系统要求。例如,它可以降低功率密度,防止损坏光学器件。在光束扩展过程中,光束能量被调整,并且可以实现平顶光输出。
此外,激光扩束器还有两个关键用途。一是提高光束的会聚效果,它通常与光束会聚系统结合使用。在会聚之前展开光束,可以通过增加输入光束直径来提高分辨率。二是压缩高斯光束的发散角,激光器的光束横截面振幅分布服从高斯函数,较大的腰径会导致较小的发散角,利用这一特性可以提高光束的方向性。
常见的透镜折射光束扩束器通常由两个或多个透镜组成,分为伽利略透镜和开普勒透镜。伽利略扩束器由凸透镜和凹透镜组成,设计紧凑,有利于系统集成,适用于高功率激光器,因为它没有内部激光会聚点,可避免热量积聚和像差。开普勒扩束镜前后组都使用正焦距透镜,更容易实现更大的放大效果,但激光会聚点在透镜中间,对于强激光能量,会聚点会产生热量,影响波前并增加像差。
激光扩束镜在激光技术中起着至关重要的作用,不同类型的扩束镜具有各自的特点和适用场景。通过了解激光扩束镜的原理和应用,我们能更好地利用这一技术,推动相关领域的发展。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
