你知道光学折射率究竟是什么吗?
你有没有想过,为什么光在不同的物质中传播会有不同的表现呢?这就与折射率密切相关。
折射率,简单来说,就是真空中光速与光在材料中传播速度之比,用公式表示为n=c/v。这里的n就是折射率啦。

而且,折射率还有相对折射率和绝对折射率之分哦。两种物质折射率之比就是相对折射率,而当其中一种物质是真空时,也就是n1=1时的相对折射率,我们就称之为绝对折射率。它反映了物质的折射率相对于真空的大小。
你知道吗?折射率还有一个很有趣的现象,那就是波长色散。物质的折射率会随着光的波长不同而发生变化,这就是色散。色散会带来一些奇妙的现象,比如白光入射棱镜后,我们会看到美丽的彩虹色,这就是因为不同颜色的光在棱镜中的折射率不同,从而导致它们折射的角度也不同。又比如在镜头中,由于色散的存在,白光聚焦的位置会因颜色而移动,这可能会影响成像的质量哦。

在大多数材料中,可见光范围内波长越短,折射率越高。但也有一些特殊的材料,它们的折射率与波长的关系恰恰相反。
光学折射率看似神秘,其实就在我们的日常生活中无处不在。它不仅让我们看到了五彩斑斓的世界,也在许多科光学领域发挥着重要的作用,特别是折射率测量仪的研发和使用上。现在,你对光学折射率是不是有了更深入的了解呢?
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
