光的折射及临界角的计算公式
光的折射如图所示,其背后蕴含着重要的计算公式。
其中,用于计算折射角和临界角的公式为\(n_1sin\theta_1=n_2sin\theta_2\)。通过这个公式,我们可以进一步推导出折射角\(\theta_2=sin^{-1}(\frac{n_1}{n_2}sin\theta_0)\),以及临界角\(\theta_c=sin^{-1}\frac{n_1}{n_2}\)。
当非偏振光入射时,假设入射折射率\(n1=1.54\),折射率\(n2=1\),我们可以根据公式计算出相应的临界角。同时,还可以通过公式得出不同入射角下的折射角,为我们深入了解光的折射行为提供了具体的数据支持。
光的折射与临界角在光学仪器设备中有着广泛的应用。比如在光纤通信中,利用光在光纤中的全反射现象,使得光能够在光纤中高效传输。而全反射的条件与临界角密切相关,通过控制光的入射角大于临界角,确保光在光纤内部不断反射而不泄漏出去,从而实现远距离、高速度的信息传输。
又如在显微镜和望远镜等光学仪器中,透镜对光的折射作用是实现放大和成像的关键。通过精心设计透镜的形状和折射率,使得不同角度入射的光能够按照特定的规律折射,从而将物体的细节清晰地呈现出来。
此外,光学棱镜也是利用光的折射原理来改变光的传播方向和进行分光等操作。根据不同的折射率和入射角,可以实现特定波长的光分离,在光谱分析等领域发挥着重要作用。
除了折射角和临界角,光学中还有许多值得探索的领域。例如,界面处的布鲁斯特角、反射率和透射率等,这些都是光学研究的重要方向,为我们进一步揭示光的本质和特性提供了线索。
-
剑桥大学发布太赫兹辐射调控新方法,为多领域高端技术突破奠定基础
2025年9月1日,英国剑桥讯——剑桥大学研究团队正式公布一种可在太赫兹(THz,Terahertz)频段实现辐射调控的技术方法。该研究成果或为通信、成像及传感领域的高端技术研发开辟新路径,同时标志着人类在开发太赫兹频段实用化设备的进程中取得重大突破。
2025-09-03
-
近红外成像技术:透视迷雾的“特殊视觉手段”,为何难以精准呈现细节?
雾天开车时,前挡风玻璃被白茫茫的雾气笼罩,仪表盘上的导航再精准,视线受阻仍是致命隐患;深夜小区的监控画面里,人影模糊成一团,连衣着颜色都难以分辨——这些场景里,藏着一种能“打破视觉局限”的技术:近红外成像。它能让我们“看见”肉眼和普通相机遗漏的世界,却又常常因画面模糊、满是噪点让人皱眉。这背后,是近红外成像的独特优势与先天困境的博弈。
2025-09-03
-
引领未来影像品质——手机摄像头模组MTF测试新标杆
在智能手机摄影性能不断突破的今天,消费者对手机镜头的成像质量提出了更高要求。从超高清视频录制到暗光环境下的细节捕捉,每一张照片、每一段视频的背后,都离不开精密的光学设计与严格的测试标准。作为手机摄像头模组制造的核心环节之一,MTF(调制传递函数)测试已成为衡量镜头性能优劣的关键指标。如何通过科学高效的测试方案,确保每一颗镜头都能达到设计标准?欧光科技推出的ImageMaster®PROHD工业型光学传递函数测量仪,为行业树立了全新的测试标杆。
2025-09-03
-
光学元件表面粗糙度的定义、参数与测量方法的系统解析
在光学系统的设计、制造与应用全过程中,光学元件(如透镜、棱镜、反射镜等)的表面质量是决定系统成像精度、透光效率及长期稳定性的核心因素。表面粗糙度作为评价光学元件表面质量的关键指标,不仅是光学加工环节的核心控制参数,更是行业内评估元件是否满足应用要求的重要技术依据。深入理解表面粗糙度的本质内涵、标准化参数及专业测量方法,对推动光学领域生产工艺优化与应用效能提升具有重要的理论与实践意义。
2025-09-03