光学棱镜都有什么种类?常见的光学棱镜汇总
光学棱镜由透明光学材料制成,各表面为平面,可分为色散棱镜和反射棱镜两大类。
色散棱镜常用于光谱仪器,将复合光分束成多个波长的光束;反射棱镜应用更广泛,在多种仪器中都有身影。

常见的光学棱镜汇总:
直角棱镜:横切面为直角三角形,光束从一个直角面入射,经斜面反射后从另一个直角面出射,折转90度。
屋脊直角棱镜:在直角棱镜基础上,斜面分成两个相互垂直的面,形成屋脊形状,光束在屋脊处折转,使影像左右互换后出射。
阿米西棱镜:以发明者命名,反射角度可任意设定,光束垂直入射后经一次反射垂直出射,表面也可做成屋脊形式。
菱形棱镜:切面为平行四边形,锐角为45度,可看作两个直角棱镜粘接,使入射光束产生移位后出射,斜面也可做成屋脊形式。
广义的菱形棱镜:形状为平行四边形,锐角任意,棱镜绕入射光线旋转时,出射图像方向不随旋转改变,适用于眼科仪器瞳距匹配。
双反射棱镜:作为广义菱形棱镜的变形,有两个不同角度的锐角,出射方向由锐角大小决定。
保罗棱镜:通常为等腰直角三角棱镜,光束从斜面入射,经两个直角面反射后从斜面出射,改变影像方向,也可在直角面作成屋脊结构。
回反棱镜:是保罗棱镜的变形,底角小于45度,光束从斜面入射,经短面和斜面反射后从另一个短面出射。
五角棱镜:一个角为直角,光束从直角面入射,内部两次反射后从另一个直角面出射,出射光线与入射光线成90度。
广义五角棱镜:光学面角度可任意设定,出射光线与入射光线角度不一定为90度。
施密特棱镜:光束在内部反射3次,光程相对较短,入射面和出射面可同时作为内部反射面。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
