光学棱镜都有什么种类?常见的光学棱镜汇总
光学棱镜由透明光学材料制成,各表面为平面,可分为色散棱镜和反射棱镜两大类。
色散棱镜常用于光谱仪器,将复合光分束成多个波长的光束;反射棱镜应用更广泛,在多种仪器中都有身影。

常见的光学棱镜汇总:
直角棱镜:横切面为直角三角形,光束从一个直角面入射,经斜面反射后从另一个直角面出射,折转90度。
屋脊直角棱镜:在直角棱镜基础上,斜面分成两个相互垂直的面,形成屋脊形状,光束在屋脊处折转,使影像左右互换后出射。
阿米西棱镜:以发明者命名,反射角度可任意设定,光束垂直入射后经一次反射垂直出射,表面也可做成屋脊形式。
菱形棱镜:切面为平行四边形,锐角为45度,可看作两个直角棱镜粘接,使入射光束产生移位后出射,斜面也可做成屋脊形式。
广义的菱形棱镜:形状为平行四边形,锐角任意,棱镜绕入射光线旋转时,出射图像方向不随旋转改变,适用于眼科仪器瞳距匹配。
双反射棱镜:作为广义菱形棱镜的变形,有两个不同角度的锐角,出射方向由锐角大小决定。
保罗棱镜:通常为等腰直角三角棱镜,光束从斜面入射,经两个直角面反射后从斜面出射,改变影像方向,也可在直角面作成屋脊结构。
回反棱镜:是保罗棱镜的变形,底角小于45度,光束从斜面入射,经短面和斜面反射后从另一个短面出射。
五角棱镜:一个角为直角,光束从直角面入射,内部两次反射后从另一个直角面出射,出射光线与入射光线成90度。
广义五角棱镜:光学面角度可任意设定,出射光线与入射光线角度不一定为90度。
施密特棱镜:光束在内部反射3次,光程相对较短,入射面和出射面可同时作为内部反射面。
-
镜头色差成因及校正技术解析:ED镜片与APO复消色差系统
在光学成像领域,色差是影响镜头成像质量的核心问题之一。尤其是在长焦拍摄、广角边缘成像或逆光、大光比等复杂场景下,画面中出现的紫边、绿边等色边现象,以及颜色浸润、边缘模糊等问题,本质上均为色差(ChromaticAberration,简称CA)导致的成像偏差。本文将系统解析色差的物理本质、产生机制,深入探讨普通镜片组合、ED镜片及APO复消色差三种校正方案的技术原理与优劣特性,并澄清行业内关于APO镜头与锐度的认知误区。
2025-12-15
-
无干涉机制赋能宽带片上角动量复用:150纳米带宽芯片技术实现
在信息技术向超高容量、微型化方向持续演进的当下,光的角动量复用技术凭借其物理正交特性,已成为破解数据传输与存储领域性能瓶颈的关键技术路径。然而,传统基于干涉法的探测方案受限于器件体积与带宽特性,难以满足芯片级集成应用的核心需求。近日,一项发表于《Science》的研究提出了无干涉角动量复用创新方案,通过设计新型纳米环孔径结构,成功实现150纳米带宽的片上并行复用,为微型化纳米光子器件的研发与应用开辟了全新路径。
2025-12-15
-
多组间隔镜片镜头的定心装配与空气间隔控制技术
在精密光学镜头(如安防监控镜头、工业检测镜头、高端成像镜头等)中,多组带空气间隔的镜片是实现高清成像的核心结构。镜片光轴的同轴度与空气间隔的精准度直接决定镜头的分辨率、像差校正效果等关键指标——若光轴偏移,会导致成像模糊、畸变;若空气间隔偏离设计值,则会破坏光学系统的共轭关系,影响画质还原。针对这类镜头,数控定心车削技术结合闭环反馈装配体系,已成为实现高精度定心装配与空气间隔控制的主流方案。
2025-12-15
-
放大的自发辐射(ASE)与受激辐射的核心机制及差异解析
在量子电子学与激光物理领域,光辐射机制的特性直接决定了光学器件的性能与应用场景。放大的自发辐射(Amplified Spontaneous Emission,ASE)作为介于自发辐射与受激辐射之间的关键光放大过程,其物理本质与两类基础辐射机制的差异,是理解光电子技术原理的核心前提。本文基于量子光学基本理论,系统梳理三者的物理机制、形成过程及核心差异,为相关领域的理论研究与技术应用提供参考。
2025-12-15
