如何根据需求挑选反射率透过率测量仪?
在光学领域,反射率透过率测量仪是一种重要的测量设备,它能够准确测量光学元件的光谱透射率和反射率。那么,如何挑选一款合适的反射率透过率测量仪呢?以下是一些关键的考虑因素。
一、测量范围
首先要考虑测量仪的波长范围。像ART-25反射率透过率测量仪,光源标准配置支持350至850nm的透射率测量,还可扩展到220-2000nm。根据实际需求,确定所需测量的波长范围,确保测量仪能够满足对特定光学元件的测量要求。
二、测量精度
高精度的测量结果对于光学元件的质量评估至关重要。ART-25测量仪的测量重复性在±0.2%以内,具有较高的测量精度。在挑选时,应关注测量仪的测量精度指标,尽量选择精度高、误差小的设备,以获得准确可靠的测量数据。
三、光学系统
独特的双光束光学系统可以提高测量的准确性和重复性。这种系统能够进行校正,减少测量误差。在挑选测量仪时,了解其光学系统的特点和性能,选择具有先进光学系统的设备,以确保测量的可靠性。
四、测量功能
除了基本的透过率和反射率测量外,一些测量仪还具备其他功能。例如,ART-25可选配测量各种棱镜的透过率,除测量P光和S光偏振外,还可直接测量45°偏振光。根据实际应用需求,选择具备所需测量功能的测量仪,能够提高工作效率和测量的全面性。
五、外形尺寸与电源要求
考虑测量仪的外形尺寸是否适合工作环境,以及电源要求是否与现有设备兼容。合适的外形尺寸和电源要求可以方便设备的安装和使用,减少不必要的麻烦。
挑选反射率透过率测量仪需要综合考虑测量范围、测量精度、光学系统、测量功能以及外形尺寸和电源要求等因素。通过仔细比较不同品牌和型号的测量仪,结合实际需求,选择一款性能优越、可靠稳定的测量仪,将为光学元件的质量检测和研究提供有力的支持。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30