如何根据需求选择合适的精密测角仪
在当今的光学器件测量领域,精密测角仪的重要性不言而喻。而面对市场上众多的选择,如何根据自身需求挑选出合适的精密测角仪呢?德国TRIOPTICSGmbH生产的精密测角仪PrismMaster或许能为我们提供一些参考。

一、明确测量需求是关键
如果需要测量棱镜、多面棱体、光楔、窗口以及其他平面光学器件的角度,PrismMaster是一个理想的选择。它的应用范围广泛,能够满足多种光学器件的测量需求。
二、考虑测量精度
PrismMaster的电子自准直仪采用超高精度的TriAngle®UltraSpec®系列产品,测量精度在10″内可达±0.05″。对于对测量精度要求极高的应用场景,这款测角仪能够提供可靠的测量结果。
三、关注产品特点
PrismMaster整体结构由大理石及金属框架设计,保证了结构稳定性及热稳定性,具有一定隔振性能,可直接用于生产车间。同时,它配有高稳定性、高精度的气浮转台,轴向径向跳动量小于50nm,并配有高精度旋转编码器。此外,不同尺寸的样品承载台能够适应不同尺寸的产品,提高了设备的通用性。
四、产品参数也不容忽视
PrismMaster有多种型号可供选择,包括PrismMaster®绝对式测角仪和PrismMaster®MAX系列大转台精密测角仪。不同型号在角度测量精度、塔差测量精度、被测产品直径、被测表面面积、仪器中心光轴高度、样品台轴承、自准直仪焦距、样品旋转台、转台承重、自准直仪通光孔径、自准直仪精度、自准直仪分辨率、自准直仪视场角、产品尺寸、产品重量、电子自准直仪等方面存在差异。根据实际需求,选择合适的参数组合,能够确保测角仪满足特定的测量任务。
选择合适的精密测角仪需要综合考虑测量需求、测量精度、产品特点和产品参数等多个方面。德国TRIOPTICSGmbH的精密测角仪PrismMaster以其广泛的应用范围、高精度的测量能力、稳定的结构和丰富的型号选择,为用户提供了一个可靠的解决方案。在选择过程中,用户应根据自身实际情况进行全面评估,以挑选出最适合自己的精密测角仪,为光学器件的测量工作提供有力保障。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12


