什么是相移干涉术?相移干涉术的全面介绍
一、引言
在现代科学技术迅猛发展的背景下,测量技术的持续创新与突破已成为推动各领域进步的核心动力。相移干涉术(PSI)作为一种先进且精确的测量技术,正逐步展现其广泛的应用潜力和显著的技术价值。
二、相移干涉术的发展历程
回顾上世纪80至90年代,这一时期见证了相移干涉术的显著发展。基于相移干涉术原理的自动3D测量显微镜实现了重大技术突破,其快速且非接触式的高精度计量能力得益于精确控制并获取一系列具有特定相位变化的图像。相移的产生通常通过干涉物镜的机械运动实现,这种精准的机械控制为测量准确性提供了坚实保障。
三、干涉测量的原理
干涉仪之所以能成为测量物体表面特性的有效工具,关键在于其巧妙利用了光的波动特性。通过分离光源并使光线沿不同路径传播,再重新组合并引导至数字相机,通过测量合成光的强度,实现对被测物体表面与参考表面的细致对比和分析。
四、相移的实现方法
在相移干涉术中,条纹图的强度分布通常可用正弦函数描述。实现相移的方法多样,常见的是使用压电陶瓷PZT移动反射镜,使参考臂光程产生阶梯式变化。每种方法均有其特点和适用场景。
五、相位解包裹的重要性
在条纹分析中,相位常被限制在-π到π之间,导致不连续的相位跃变。相位解包裹过程对此问题至关重要,虽存在多种算法,但无绝对完美之选,需根据具体需求和条件灵活选用。
六、干涉仪的设计
当前技术领域中,主流干涉仪设计多参考三种经典结构之一,并在此基础上进行优化和创新。
七、相移干涉术的测量精度
相移干涉术在测量精度方面表现突出,尤其在纵向精度上,能为测量提供极高准确性。然而,横向精度受衍射限制,表现相对一般。通过详细比较不同测量技术的精度,科研人员和工程技术人员可根据实际需求选择最合适的测量方法。
八、相移干涉术的应用
在众多应用领域中,光纤连接器的质量控制尤为关键。光纤连接器的性能直接影响光信号传输的稳定性和可靠性。光纤端面干涉仪成功应用相移干涉术,精确控制光纤端面参数,显著提升光纤连接器性能,保障光通信系统的高效运行。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30