什么是相移干涉术?相移干涉术的全面介绍
一、引言
在现代科学技术迅猛发展的背景下,测量技术的持续创新与突破已成为推动各领域进步的核心动力。相移干涉术(PSI)作为一种先进且精确的测量技术,正逐步展现其广泛的应用潜力和显著的技术价值。

二、相移干涉术的发展历程
回顾上世纪80至90年代,这一时期见证了相移干涉术的显著发展。基于相移干涉术原理的自动3D测量显微镜实现了重大技术突破,其快速且非接触式的高精度计量能力得益于精确控制并获取一系列具有特定相位变化的图像。相移的产生通常通过干涉物镜的机械运动实现,这种精准的机械控制为测量准确性提供了坚实保障。
三、干涉测量的原理
干涉仪之所以能成为测量物体表面特性的有效工具,关键在于其巧妙利用了光的波动特性。通过分离光源并使光线沿不同路径传播,再重新组合并引导至数字相机,通过测量合成光的强度,实现对被测物体表面与参考表面的细致对比和分析。
四、相移的实现方法
在相移干涉术中,条纹图的强度分布通常可用正弦函数描述。实现相移的方法多样,常见的是使用压电陶瓷PZT移动反射镜,使参考臂光程产生阶梯式变化。每种方法均有其特点和适用场景。
五、相位解包裹的重要性
在条纹分析中,相位常被限制在-π到π之间,导致不连续的相位跃变。相位解包裹过程对此问题至关重要,虽存在多种算法,但无绝对完美之选,需根据具体需求和条件灵活选用。
六、干涉仪的设计
当前技术领域中,主流干涉仪设计多参考三种经典结构之一,并在此基础上进行优化和创新。
七、相移干涉术的测量精度
相移干涉术在测量精度方面表现突出,尤其在纵向精度上,能为测量提供极高准确性。然而,横向精度受衍射限制,表现相对一般。通过详细比较不同测量技术的精度,科研人员和工程技术人员可根据实际需求选择最合适的测量方法。
八、相移干涉术的应用
在众多应用领域中,光纤连接器的质量控制尤为关键。光纤连接器的性能直接影响光信号传输的稳定性和可靠性。光纤端面干涉仪成功应用相移干涉术,精确控制光纤端面参数,显著提升光纤连接器性能,保障光通信系统的高效运行。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
