硅波导损耗的成因、降低策略与测试解析
在光通信领域,硅波导是一种非常重要的元件。然而,硅波导存在损耗问题,这会影响光信号的传输质量和效率。那么,硅波导的损耗是怎么产生的呢?又有哪些方法可以减小这些损耗呢?
硅波导损耗主要有两个来源:侧壁粗糙和弯曲波导。
侧壁粗糙会导致传输损耗。由于波导加工的限制,侧壁会有大约1nm的粗糙度,这会加剧光场的散射。在1550nm波长下,硅波导的传输损耗一般在2-3dB/cm左右。
弯曲波导也会引起损耗。当波导弯曲时,等效折射率会发生改变,部分光场会散射到衬底中。此外,直波导与弯曲波导连接时也会存在损耗。
为了减小硅波导的损耗,科学家们采取了多种方法。
改进波导加工工艺是foundry努力的方向,通过提高加工精度,可以减少侧壁的粗糙度,从而降低损耗。
选用较宽的脊形波导也是一种有效的方法。脊形波导的模场与侧壁交叠较少,因此传输损耗可以大大降低。基于浅刻蚀的脊形波导传输损耗可达到0.3dB/cm,在长距离routing中可以采用,但需要设计好过渡结构,以确保只激发脊形波导的基模。
利用SiN波导也是一种新思路。将Si波导中的光转移到SiN波导中,由于SiN光场束缚较弱,侧壁粗糙带来的损耗影响相对较小。不过,这需要设计Si-SiN的模式转换结构。
设计Eulerbend可以减小直波导与弯曲波导连接时的损耗。通过缓慢改变弯曲波导的曲率半径,可以实现这一目标。
此外,半径为5um(或更小)的弯曲波导可以起到偏振片的作用,因为TM模式经过弯曲波导更容易散射到衬底中,而TE模受弯曲波导的影响相对较小。
在测试硅波导损耗时,有两种常用的方法。传输损耗测试采用cut-back方法,选用不同长度的波导进行测试,这样可以同时得到耦合损耗和传输损耗。弯曲波导损耗测试则采用多个bends相连,通过比较不同数目bends的损耗,来得到单个bend的损耗大小。
不同硅光foundry提供的硅波导损耗参数也有所不同。一般来说,条形波导的传输损耗在2-3dB/cm左右,弯曲半径大于5um即可。
总之,减小硅波导损耗的方法主要包括工艺改进和新结构的设计。通过不断探索和创新,相信未来能够进一步降低硅波导的损耗,提高光通信的性能。
-
超短脉冲激光加工系统:精密制造领域的效率突破与技术革新
随着对加工精度、材料适应性的要求不断提升,超短脉冲(Ultra-ShortPulse,USP)激光器凭借其独特的脉冲特性——脉冲持续时间可压缩至皮秒甚至飞秒级别,能够有效抑制热影响区(Heat-AffectedZone,HAZ)、降低材料损伤,已成为微加工领域的关键技术手段。近十年来,USP激光器的加工稳定性与操作灵活性持续优化,加工质量已满足诸多高端应用场景需求,但在工业应用场景中,“效率瓶颈”始终是制约其规模化推广的核心问题。为突破这一限制,研究人员不仅从激光器本体出发(如提升脉冲能量、提高脉冲重复率),更在激光能量管理领域开展深度研究,通过创新的光束控制、整形与分发技术,为USP激光加工技术的工业化应用注入新动能。
2025-09-16
-
激光器相位调制技术的原理、实现与应用解析
从超高速相干光通信到精密光学传感,再到量子计算与原子物理研究,激光的“相位”特性正成为承载信息、实现精准控制的核心载体。不同于直接改变光强的强度调制,激光相位调制(PhaseModulation,PM)通过精准调控激光相位的动态变化,实现了更高效、抗干扰能力更强的信息传输与信号处理,已成为高性能光电子系统的关键支撑技术
2025-09-16
-
为什么必须重视显微镜物镜MTF测量?
在生命科学研究的细胞观察、材料科学的微观结构分析、医疗诊断的病理切片研判中,显微镜物镜是决定“看得清、看得准”的核心部件——其成像分辨率、视场均匀性、畸变控制直接影响实验结论与应用效果。而如何科学量化这一核心性能?光学传递函数(MTF)作为国际公认的成像质量“金标准”,正是显微镜物镜性能检测的关键技术;而欧光科技代理的德国TRIOPTICSImageMaster系列MTF测量仪,更成为赋能显微镜物镜研发与量产的“性能校准专家”。
2025-09-15
-
反射镜技术的原理、分类、结构及应用特性解析
反射镜作为利用光的反射特性调控光路的关键光学元件,广泛应用于日常生活、工业制造及前沿科研领域——从民用梳妆镜、汽车后视镜,到工业激光设备、天文观测系统,其功能实现均以精准引导光线传播为核心目标。本文基于光的反射定律,系统梳理反射镜的分类体系,拆解其核心组成结构,全面阐述该类光学元件的技术特性与应用适配逻辑。
2025-09-15