硅波导损耗的成因、降低策略与测试解析
在光通信领域,硅波导是一种非常重要的元件。然而,硅波导存在损耗问题,这会影响光信号的传输质量和效率。那么,硅波导的损耗是怎么产生的呢?又有哪些方法可以减小这些损耗呢?
硅波导损耗主要有两个来源:侧壁粗糙和弯曲波导。
侧壁粗糙会导致传输损耗。由于波导加工的限制,侧壁会有大约1nm的粗糙度,这会加剧光场的散射。在1550nm波长下,硅波导的传输损耗一般在2-3dB/cm左右。
弯曲波导也会引起损耗。当波导弯曲时,等效折射率会发生改变,部分光场会散射到衬底中。此外,直波导与弯曲波导连接时也会存在损耗。
为了减小硅波导的损耗,科学家们采取了多种方法。
改进波导加工工艺是foundry努力的方向,通过提高加工精度,可以减少侧壁的粗糙度,从而降低损耗。
选用较宽的脊形波导也是一种有效的方法。脊形波导的模场与侧壁交叠较少,因此传输损耗可以大大降低。基于浅刻蚀的脊形波导传输损耗可达到0.3dB/cm,在长距离routing中可以采用,但需要设计好过渡结构,以确保只激发脊形波导的基模。
利用SiN波导也是一种新思路。将Si波导中的光转移到SiN波导中,由于SiN光场束缚较弱,侧壁粗糙带来的损耗影响相对较小。不过,这需要设计Si-SiN的模式转换结构。
设计Eulerbend可以减小直波导与弯曲波导连接时的损耗。通过缓慢改变弯曲波导的曲率半径,可以实现这一目标。

此外,半径为5um(或更小)的弯曲波导可以起到偏振片的作用,因为TM模式经过弯曲波导更容易散射到衬底中,而TE模受弯曲波导的影响相对较小。
在测试硅波导损耗时,有两种常用的方法。传输损耗测试采用cut-back方法,选用不同长度的波导进行测试,这样可以同时得到耦合损耗和传输损耗。弯曲波导损耗测试则采用多个bends相连,通过比较不同数目bends的损耗,来得到单个bend的损耗大小。
不同硅光foundry提供的硅波导损耗参数也有所不同。一般来说,条形波导的传输损耗在2-3dB/cm左右,弯曲半径大于5um即可。
总之,减小硅波导损耗的方法主要包括工艺改进和新结构的设计。通过不断探索和创新,相信未来能够进一步降低硅波导的损耗,提高光通信的性能。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
