硅波导损耗的成因、降低策略与测试解析
在光通信领域,硅波导是一种非常重要的元件。然而,硅波导存在损耗问题,这会影响光信号的传输质量和效率。那么,硅波导的损耗是怎么产生的呢?又有哪些方法可以减小这些损耗呢?
硅波导损耗主要有两个来源:侧壁粗糙和弯曲波导。
侧壁粗糙会导致传输损耗。由于波导加工的限制,侧壁会有大约1nm的粗糙度,这会加剧光场的散射。在1550nm波长下,硅波导的传输损耗一般在2-3dB/cm左右。
弯曲波导也会引起损耗。当波导弯曲时,等效折射率会发生改变,部分光场会散射到衬底中。此外,直波导与弯曲波导连接时也会存在损耗。
为了减小硅波导的损耗,科学家们采取了多种方法。
改进波导加工工艺是foundry努力的方向,通过提高加工精度,可以减少侧壁的粗糙度,从而降低损耗。
选用较宽的脊形波导也是一种有效的方法。脊形波导的模场与侧壁交叠较少,因此传输损耗可以大大降低。基于浅刻蚀的脊形波导传输损耗可达到0.3dB/cm,在长距离routing中可以采用,但需要设计好过渡结构,以确保只激发脊形波导的基模。
利用SiN波导也是一种新思路。将Si波导中的光转移到SiN波导中,由于SiN光场束缚较弱,侧壁粗糙带来的损耗影响相对较小。不过,这需要设计Si-SiN的模式转换结构。
设计Eulerbend可以减小直波导与弯曲波导连接时的损耗。通过缓慢改变弯曲波导的曲率半径,可以实现这一目标。

此外,半径为5um(或更小)的弯曲波导可以起到偏振片的作用,因为TM模式经过弯曲波导更容易散射到衬底中,而TE模受弯曲波导的影响相对较小。
在测试硅波导损耗时,有两种常用的方法。传输损耗测试采用cut-back方法,选用不同长度的波导进行测试,这样可以同时得到耦合损耗和传输损耗。弯曲波导损耗测试则采用多个bends相连,通过比较不同数目bends的损耗,来得到单个bend的损耗大小。
不同硅光foundry提供的硅波导损耗参数也有所不同。一般来说,条形波导的传输损耗在2-3dB/cm左右,弯曲半径大于5um即可。
总之,减小硅波导损耗的方法主要包括工艺改进和新结构的设计。通过不断探索和创新,相信未来能够进一步降低硅波导的损耗,提高光通信的性能。
-
镜头色差成因及校正技术解析:ED镜片与APO复消色差系统
在光学成像领域,色差是影响镜头成像质量的核心问题之一。尤其是在长焦拍摄、广角边缘成像或逆光、大光比等复杂场景下,画面中出现的紫边、绿边等色边现象,以及颜色浸润、边缘模糊等问题,本质上均为色差(ChromaticAberration,简称CA)导致的成像偏差。本文将系统解析色差的物理本质、产生机制,深入探讨普通镜片组合、ED镜片及APO复消色差三种校正方案的技术原理与优劣特性,并澄清行业内关于APO镜头与锐度的认知误区。
2025-12-15
-
无干涉机制赋能宽带片上角动量复用:150纳米带宽芯片技术实现
在信息技术向超高容量、微型化方向持续演进的当下,光的角动量复用技术凭借其物理正交特性,已成为破解数据传输与存储领域性能瓶颈的关键技术路径。然而,传统基于干涉法的探测方案受限于器件体积与带宽特性,难以满足芯片级集成应用的核心需求。近日,一项发表于《Science》的研究提出了无干涉角动量复用创新方案,通过设计新型纳米环孔径结构,成功实现150纳米带宽的片上并行复用,为微型化纳米光子器件的研发与应用开辟了全新路径。
2025-12-15
-
多组间隔镜片镜头的定心装配与空气间隔控制技术
在精密光学镜头(如安防监控镜头、工业检测镜头、高端成像镜头等)中,多组带空气间隔的镜片是实现高清成像的核心结构。镜片光轴的同轴度与空气间隔的精准度直接决定镜头的分辨率、像差校正效果等关键指标——若光轴偏移,会导致成像模糊、畸变;若空气间隔偏离设计值,则会破坏光学系统的共轭关系,影响画质还原。针对这类镜头,数控定心车削技术结合闭环反馈装配体系,已成为实现高精度定心装配与空气间隔控制的主流方案。
2025-12-15
-
放大的自发辐射(ASE)与受激辐射的核心机制及差异解析
在量子电子学与激光物理领域,光辐射机制的特性直接决定了光学器件的性能与应用场景。放大的自发辐射(Amplified Spontaneous Emission,ASE)作为介于自发辐射与受激辐射之间的关键光放大过程,其物理本质与两类基础辐射机制的差异,是理解光电子技术原理的核心前提。本文基于量子光学基本理论,系统梳理三者的物理机制、形成过程及核心差异,为相关领域的理论研究与技术应用提供参考。
2025-12-15
