中心偏差测量仪的测量原理科普
在光学测量领域,中心偏差测量仪是一款重要的工具,其在测量透镜的中心偏差时,采用了反射和透射两种不同的模式,每种模式都有着独特的测量原理。

一、反射模式
在反射模式下,测量仪装配有附加镜头的自准直仪会聚焦在透镜的表面曲率中心。这就像是给透镜表面做了一个精准的“定位”。自准直仪发出的光线照到透镜表面后反射回来,通过目镜接收这个反射像。
比如说,如果透镜表面存在倾斜,那么反射回来的像就会明显偏移。就好像我们照镜子,如果镜子倾斜了,我们在镜子里的像也会跟着倾斜和偏移。测量仪通过对这个偏移的精确测量和分析,能够准确计算出透镜表面的中心偏差数值。

二、透射模式
在透射模式下,情况则有所不同。自准直仪会聚焦在被测透镜的焦平面。这需要一个附加的平行光管来帮忙,平行光管发出平行光束,透过透镜聚焦在焦平面上。
然而,透射模式存在一些局限性。它不能确切地指出是透镜的哪一个表面产生了定心误差。有时甚至会出现奇怪的情况,明明透镜在机械套件内有倾斜,但在透射模式下测量时却显示不存在偏心。
这是因为透射模式的测量结果可能受到多种因素干扰,导致无法清晰地判断偏心的源头和具体状况。
相比之下,反射模式在描绘透镜的倾斜和各自的中心偏差方面更具优势。它能像“放大镜”一样,明确地展示出透镜各表面的真实情况,为精确测量和分析提供了有力的支持。
总的来说,中心偏差测量仪的这两种测量模式各有特点,在不同的应用场景中发挥着重要作用,帮助我们更深入地了解透镜的特性和质量。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
