中心偏差测量仪的测量原理科普
在光学测量领域,中心偏差测量仪是一款重要的工具,其在测量透镜的中心偏差时,采用了反射和透射两种不同的模式,每种模式都有着独特的测量原理。

一、反射模式
在反射模式下,测量仪装配有附加镜头的自准直仪会聚焦在透镜的表面曲率中心。这就像是给透镜表面做了一个精准的“定位”。自准直仪发出的光线照到透镜表面后反射回来,通过目镜接收这个反射像。
比如说,如果透镜表面存在倾斜,那么反射回来的像就会明显偏移。就好像我们照镜子,如果镜子倾斜了,我们在镜子里的像也会跟着倾斜和偏移。测量仪通过对这个偏移的精确测量和分析,能够准确计算出透镜表面的中心偏差数值。

二、透射模式
在透射模式下,情况则有所不同。自准直仪会聚焦在被测透镜的焦平面。这需要一个附加的平行光管来帮忙,平行光管发出平行光束,透过透镜聚焦在焦平面上。
然而,透射模式存在一些局限性。它不能确切地指出是透镜的哪一个表面产生了定心误差。有时甚至会出现奇怪的情况,明明透镜在机械套件内有倾斜,但在透射模式下测量时却显示不存在偏心。
这是因为透射模式的测量结果可能受到多种因素干扰,导致无法清晰地判断偏心的源头和具体状况。
相比之下,反射模式在描绘透镜的倾斜和各自的中心偏差方面更具优势。它能像“放大镜”一样,明确地展示出透镜各表面的真实情况,为精确测量和分析提供了有力的支持。
总的来说,中心偏差测量仪的这两种测量模式各有特点,在不同的应用场景中发挥着重要作用,帮助我们更深入地了解透镜的特性和质量。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
