高精度光学传递函数测量仪有什么特点?
ImageMaster®Universal系列高精度光学传递函数测量仪由德国TRIOPTICS GmbH精心设计,其卓越之处首先体现在能够在极为宽广的光谱范围内对几乎所有类型系统的光学参数进行精确测量。这一特性使得它在众多同类产品中脱颖而出,成为光学测量领域的佼佼者。
让我们深入了解一下它的显著特点。其卧式结构与全自动测量的设计,极大地简化了操作流程,为使用者带来便捷高效的体验。广泛的测量对象更是令人瞩目,无论是直线构型、L形构型、U形构型,还是空间折转型系统等,它都能应对自如,展现出强大的通用性。
模块化设计与一体化运输不仅方便了维护保养,还降低了运输过程中的风险和成本。离轴抛物面反射镜设计的平行光管,实现了全波段的覆盖,确保了测量的全面性和准确性。铝质外壳的运用,有效起到隔光挡风的作用,为测量创造了稳定的环境。
模块化靶标发生器及探测器的可快速切换功能,大大提高了测量效率。测量精度可溯源至国际标准,这一特性无疑是对其测量结果准确性的有力保证。而软件模块化且使用简单易懂,用户能够编辑脚本,实现自定义测量,并直接以报告形式输出结果,极大地满足了不同用户的个性化需求。
再来看看它丰富而全面的测量参数,包括F数、场曲、焦深、色差、像散、畸变、视场角、相对照度、相对透过率、主光束角度、点扩散函数PSF、线扩散函数LSF、相位传递函数PTF、有效焦距EFL、离焦光学传递函数MTF、轴上/轴外光学传递函数MTF等。如此广泛的测量参数,几乎涵盖了光学系统性能评估的各个方面。
从产品参数的角度来看,ImageMaster®Universal同样表现出色。系统配置多样,涵盖无限-有限共轭系统、有限-有限共轭系统、无焦系统,以满足不同的测量需求。光谱范围广泛,从紫外线(250...450nm)到中波红外(3...5μm)和长波红外(7...13μm)等均有涉及。样品焦距范围为5...2000mm且可扩展,最大通光口径达450mm并可扩展。最大离轴角度为±120°,甚至可扩展至±180°。EFL测量精度高达±0.3%,MTF测量精度在轴上为±0.02MTF,轴外为±0.03MTF,测量重复性为±0.01MTF。最大空间频率在不同波段也有出色表现。此外,它还能承载20kg的样品,测量方位角可达360°。
值得一提的是,该产品还可根据客户的特定需求进行定制,充分展现了其灵活性和对市场的适应性。
由于具备上述诸多优势,ImageMaster®Universal研发型高精度光学传递函数测量仪在众多领域都有着广泛的应用。
在航空航天领域,用于测量卫星光学系统、飞机导航系统等的光学性能,确保其在极端环境下的可靠性和精准度。
在医疗设备行业,如高精度显微镜、医疗成像设备的研发和生产中,对光学部件的性能进行严格检测,保障医疗诊断和治疗的准确性。
在通信领域,对于光纤通信系统中的光学器件进行测量,提升信号传输的质量和稳定性。
在半导体科研领域,更是为研究人员探索新的光学现象、开发新型光学材料和器件提供了不可或缺的工具。
ImageMaster®Universal研发型高精度传函仪以其高精度、多功能、易于使用等优点,成为光学系统精确测量和分析的得力助手,为推动光学技术的发展和应用发挥着重要作用。随着科技的不断进步,相信它将在更多领域展现出更为卓越的价值。
-
光子晶体:让光“听话”的神奇人工结构,开启光学器件革命新篇
1987年,两位科学家Yablonovitch和John的一项发现,为光学领域埋下了一颗颠覆性的种子——他们提出,一种由电介质周期性排列构成的人工材料,能像半导体控制电子一样“囚禁”特定频率的光,这就是后来被称为“光子晶体”的神奇结构。三十多年过去,这项源于理论物理的构想,正从实验室走向现实,成为光通信、能源、传感等领域的关键技术突破口。
2025-04-30
-
密苏里大学研发荧光多离子纳米粘土材料:开启多领域定制化应用新可能
2025年4月29日,密苏里大学的研究团队宣布成功研制出一种具有革命性的纳米材料——荧光多离子纳米粘土。这种基于粘土的微小材料凭借其卓越的可定制性,在能源技术、医疗诊断、环境监测等领域展现出广阔的应用前景,相关研究成果已发表于《材料化学》杂志。
2025-04-30
-
南开大学在螺旋锥形光束研究中取得重要突破为微纳操控技术提供新工具
近日,南开大学许东野教授团队在结构光场调控领域取得重要进展,其关于螺旋锥形光束(Helico-ConicalBeams,HCBs)生成与重构的研究成果发表于国际光学权威期刊《ChineseOpticsLetters》。这项突破通过创新的光学干涉技术,实现了复杂光场的精准操控,为微纳粒子操纵、纳米制造等前沿领域提供了关键技术支撑。
2025-04-30
-
光的干涉现象:从基础物理到前沿技术的演进
阳光下悬浮的肥皂泡表面呈现出斑斓的色彩,这一常见的光学现象本质上是光的干涉效应所致。作为波动光学的核心现象,光的干涉不仅解释了自然界中的视觉奇观,更成为现代精密测量技术的理论基石。从微米级的芯片集成到千米级的引力波探测,干涉原理的应用贯穿于从微观到宏观的广阔领域,深刻推动着科学研究与工程技术的发展。
2025-04-29