科研新前沿:非线性光学全光计算和人工智能融合
在人工智能与光子学设计的融合背景下,科研领域的边界持续扩展,创新成果不断涌现。从理论模型的整合到光学现象的复杂模拟,从数据驱动的探索到光场的智能分析,机器学习正以前所未有的动力推动光学设备领域的革新。据调查显示,目前在Nature和Science杂志上发表的机器学习与光子学结合的研究主要集中在以下几个方面:

一:光子器件的逆向设计:通过机器学习,特别是深度学习,可以高效地进行光子器件的逆向设计,这在传统的多参数优化问题中尤为重要。
二:超构表面和超材料设计:机器学习被用于设计具有特定光学特性的超构表面和超材料,这些材料在光场调控中发挥着重要作用。
三:光子神经网络:利用光子器件构建的神经网络可以进行快速的矩阵-向量运算,加速深度学习算法的执行。
四:非线性光学与光子芯片:非线性光学材料和非厄米拓扑光子学为高性能片上处理方案提供了新的可能性,智能光子芯片在全光计算、信号处理和量子技术等领域具有广泛的应用前景。
五:智能光子系统的多任务优化:通过深度学习与拓扑优化的结合,可以同时优化多个光子器件的功能,提高设计效率并保证性能。
六:光谱分析与预测:机器学习模型能够分析光谱数据,预测材料特性或器件性能,这对于材料科学和光子器件的研发至关重要。
以上就是欧光科技为大家带来的“研新前沿:非线性光学全光计算和人工智能融合”的相关内容,如果还有更多光学问题,欢迎咨询我们!
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
