【光学前沿资讯】超快3D成像技术EventLFM,让你秒懂复杂生物动态!
你有没有想过,科学家们是如何捕捉那些快速移动的3D物体,甚至是活体生物的复杂动态呢?最近,波士顿大学的LeiTian教授和他的团队在《光:科学与应用》杂志上发表了一项研究---他们开发了一种名为EventLFM的超快单次3D成像技术.

这项技术结合了事件相机和傅立叶低频成像系统,能够在千赫速度下进行容积成像。简单来说,就是它能以极快的速度捕捉到3D物体的每一个动态细节,就像电影里的慢动作回放一样,只不过这是真实的科学实验!
研究团队通过一系列实验,展示了EventLFM在1kHz时间分辨率下重建快速移动3D物体的能力。他们甚至能够对脉冲宽度只有1毫秒的高频三维闪烁物体进行成像.
不仅如此,EventLFM还能有效捕捉到散射组织内的快速动态信号。通过对小鼠大脑切片中的神经元活动进行成像,科学家们模拟了一系列DMD模式,以千赫速率诱导出独特的时空足迹。意味着我们或许很快就能更深入地理解大脑的工作机制了!
更令人兴奋的是,该团队还成功地在3D空间内对自由移动的秀丽隐杆线虫体内表达GFP的神经元进行了成像和跟踪,帧频达到500赫兹。结合深度学习重建网络,EventLFM的成像质量得到了大幅提升,3D分辨率也得到了增强。
这项技术的出现,为研究人员提供了一种全新的工具,让他们能够以千赫速度观察3D动态生物过程。LeiTian教授表示:“我们设计的EventLFM将事件相机与傅立叶LFM系统集成在一起,从而能够以千赫速度对复杂、快速的生物过程进行成像,并具有较高的三维分辨率。”
科学家们还预测,EventLFM因其简单性、超快3D成像能力以及在散射环境中的稳健性,有潜力成为各种生物医学应用中可视化复杂、动态三维生物现象的宝贵工具。
这项技术的未来应用前景广阔,从基础科学研究到临床医学,EventLFM都可能带来革命性的变化。让我们拭目以待,看看这项技术将如何继续推动科学的边界!欧光科技也会持续关注相关的新动态!
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
