【光学前沿】定制化多带硅基片上光谱仪的创新与应用
光谱仪作为一种广泛应用于科学探测的仪器,在药物分析、气体传感及航空航天等多个领域扮演着关键角色。随着硅光集成技术的进步,低成本、便携式的片上光谱仪已成为现实。然而,实现超大光谱范围与超高分辨率的结合,常伴随着系统复杂性、尺寸、功耗及效率等方面的挑战。
近期,浙江大学戴道锌教授团队在小型化片上硅基光谱仪的研究中取得了显著进展。他们提出了一种定制化多带硅基片上光谱仪,利用光子集成回路的灵活设计,通过选择特定的光谱子带,精简了不必要的谱段,实现了光谱子带数量、中心波长、带宽及分辨率等性能指标的定制化。这一创新不仅显著减小了芯片尺寸,提高了加工良品率,还降低了校准复杂度和测量速度。相关研究成果已发表于2024年第5期,并被选为封面文章。
该定制化光谱仪的工作原理如图1所示,采用宽带滤波与窄带精细滤波相结合的方案。待测光谱首先通过宽带滤波器进行预滤波,随后被分割为多个待测通道子带,传输至微环滤波器进行精密滤波,并通过加热调谐实现单通道的完整扫描,最终构建出整个待测光谱。
图2展示了该光谱仪采用的光滤波器结构,其中宽带滤波器采用多模布拉格光栅设计,窄带滤波器则采用高Q值弯曲耦合微环谐振器,确保了高光谱分辨率。
图3展示了绝热双芯模式解复用器及宽/窄带滤波器在不同波段的光谱响应。仿真结果显示,模式复用器的附加损耗和串扰均控制在极低水平,多模布拉格光栅宽带滤波器的边模抑制比大于20 dB,高Q值微环窄带滤波器的3 dB带宽分别为0.1 nm、0.1 nm和0.35 nm,为高光谱分辨率提供了坚实基础。
图4和图5分别展示了研制的光谱芯片和不同输入光谱的测量结果。结果显示,该片上光谱仪与商用光谱仪在分辨率上具有高度一致性,且在双峰测量中表现出优于0.08 nm的分辨率。此外,该光谱仪在1307-1935 nm的超大光谱范围内展现了出色的多谱段光谱测量能力。
以上就是欧光科技为大家整理的相关光学前沿资讯,如果还想了解更多光学前沿资讯,欢迎持续关注我们。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
