如何使用温控型折射率测量仪进行红外波段的高精度折射率测量?
温控型折射率测量仪是一种专为红外波段折射率测量设计的高精度光学仪器,亦可用于可见光测量。该仪器通过其集成的温控系统,确保测量过程中样品的温度恒定,从而显著提升测量结果的准确性。其核心测量原理基于最小偏角法,这是一种经典的光学测量技术,通过精确测量透射光与入射光之间的角度差来计算样品的折射率。
该仪器的测量范围广泛,能够覆盖从1微米至14微米的波长区间,使其能够满足多种测量需求。在这一宽广的波长范围内,仪器能够实现高达0.0001级别的折射率测量精度,这在光学测量领域属于极高标准。这种高精度的测量能力对于评估和选择适用于红外波段的材料至关重要,包括锗(Ge)、硅(Si)、锌硒化物(ZnSe)、溴化钾铕酸盐(KRS-5)、硫化物玻璃及红外光学薄膜等。
此外,温控型折射率测量仪不仅能够测量材料在特定温度下的折射率,还能评估因样品温度变化引起的折射率变化,即温度系数(dn/dT)。这一功能对于研究材料在不同环境条件下的性能变化具有重要意义,尤其是在需要考虑温度影响的红外光学系统设计中。
该仪器的控温功能为用户提供了额外的便利性。通过精确控制样品的温度,用户可以模拟不同的环境条件,从而更全面地了解材料的光学特性。这种能力使得温控型折射率测量仪成为红外窗口、红外透镜和硫系玻璃等材料折射率测量的理想选择,为红外光学领域的研究和开发提供了强有力的支持。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15