如何使用温控型折射率测量仪进行红外波段的高精度折射率测量?
温控型折射率测量仪是一种专为红外波段折射率测量设计的高精度光学仪器,亦可用于可见光测量。该仪器通过其集成的温控系统,确保测量过程中样品的温度恒定,从而显著提升测量结果的准确性。其核心测量原理基于最小偏角法,这是一种经典的光学测量技术,通过精确测量透射光与入射光之间的角度差来计算样品的折射率。

该仪器的测量范围广泛,能够覆盖从1微米至14微米的波长区间,使其能够满足多种测量需求。在这一宽广的波长范围内,仪器能够实现高达0.0001级别的折射率测量精度,这在光学测量领域属于极高标准。这种高精度的测量能力对于评估和选择适用于红外波段的材料至关重要,包括锗(Ge)、硅(Si)、锌硒化物(ZnSe)、溴化钾铕酸盐(KRS-5)、硫化物玻璃及红外光学薄膜等。
此外,温控型折射率测量仪不仅能够测量材料在特定温度下的折射率,还能评估因样品温度变化引起的折射率变化,即温度系数(dn/dT)。这一功能对于研究材料在不同环境条件下的性能变化具有重要意义,尤其是在需要考虑温度影响的红外光学系统设计中。
该仪器的控温功能为用户提供了额外的便利性。通过精确控制样品的温度,用户可以模拟不同的环境条件,从而更全面地了解材料的光学特性。这种能力使得温控型折射率测量仪成为红外窗口、红外透镜和硫系玻璃等材料折射率测量的理想选择,为红外光学领域的研究和开发提供了强有力的支持。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
