光学系统设计与优化过程中应注意的事项
光学设计是指利用光学原理和技术对光学元件和光学系统进行设计的过程。光学设计历史悠久,近年来,随着光学设计软件的发展,光学设计工作似乎变得越来越简单和实用。对于一些比较简单的系统,我们确实可以通过设置系统参数和评估参数来选择合适的初始结构。这使我们能够更轻松地获得设计结果。
常用的光学设计软件,如Zemax、CodeV,提供了一种非常方便、直观的方法来评估光学系统的性能,如调制传递函数、波前差、光斑尺寸等。光学系统需要具有满足用户要求的设计性能。然而,对设计性能的满意只是光学设计的第一步。光学系统的评估应该是多方面的。

一、公差分析与优化
由于设计评价中使用的零件或组件都是完美无缺陷得,系统并未考虑组装的影响,因此,系统的设计性能很有可能非常好。但是,加工后的零件或组件存在各种可能出现的误差,基于公差分析,进行产品合格率的模拟是设计过程中的重要组成部分,特别是对于要求高的复杂系统。公差分析可以客观地评估光学系统在生产过程中的合格率,判断加工生产的风险。
二、光学零件的可加工性
光学系统由光学零件组成。零件加工的难度直接影响光学系统的加工周期和合格率,甚至会影响项目的进度。
如果设计的零件与组件无法加工,则应重新优化。同时,在设计过程中,应尽量减少难以加工且合格率低的光学零件的数量。对于在产品制造过程中需要进行调整的光学系统,设计人员还应考虑元件的形状是否会影响装校过程。
三、光学材料的选择
光学材料的选择是设计过程的重要组成部分。虽然光学设计软件可以自动寻找到适合系统性能的光学材料,但设计人员仍然必须从各个角度评估这些材料是否合适。
建议选择更便宜、加工周期更短的材料。否则,寻找材料可能具有挑战性,从而增大零件加工周期过长的风险。
光学材料的硬度和化学稳定性影响加工难度,会影响镜头加工的周期和成品率率。
材料的选择应与应用场合保持一致。设计师的需要了解项目的应用环境等因素。
四、装校方案与测试
光学系统的生产和验证涉及系统装校和性能测试。如果在设计过程中不考虑如何调整和测试,调整和测试就会失去基础。在进行光学设计之前,应考虑实际产品的加工工艺和测试内容。根据所选的工艺和测试条件,在设计过程中对光学系统进行优化。
五、光机耦合
光学系统在投入生产之前,需要进行结构设计,即完成光学系统的机械设计。光学设计人员在设计过程中应与机械设计工程师保持充分的沟通。如果最初的光学设计对于结构设计有困难,则应进行相应的改进。
优化光学系统设计不仅仅是实现理论性能。成功的设计会考虑可制造性、材料选择、易于组装和测试以及与最终机械结构的兼容性。通过从一开始就结合这些方面,设计人员可以创建不仅功能强大,而且可行且具有成本效益的光学系统。
文章来源:红外光学
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
