【光学前沿】芯片级激光器研发取得新进展
自20世纪60年代以来,激光技术的发展为世界带来了革命性的变化,广泛应用于尖端手术、精密制造、光纤数据传输等领域。随着激光应用需求的增长,光纤激光器市场不断扩大,主要用于工业切割、焊接和打标。
一、光纤激光器的特点
光纤激光器使用掺杂稀土元素(如铒、镱、钕)的光纤作为光学增益源,具有高质量光束、高输出功率、高效率、低维护成本和耐用性。它们体积小,是低相位噪声的“黄金标准”,光束稳定性高。
尽管光纤激光器性能优越,但对芯片级光纤激光器微型化的需求不断增长,特别是在保持高相干性和稳定性的基础上。
二、研究突破
EPFL的Yang Liu博士和Tobias Kippenberg教授领导的团队成功制造出首台芯片集成的掺铒波导激光器,性能接近光纤激光器,同时具备宽波长可调谐性和芯片级光子集成的实用性。该研究发表在《自然·光子学》上。
三、技术细节
研究人员采用先进制造工艺,在超低损耗氮化硅光子集成电路上构建了一米长的片上光腔。通过集成微孔谐振器,有效延长光路而不增大物理尺寸。电路中植入高浓度铒离子,与III-V族半导体泵浦激光器集成,激发铒离子产生激光。
3.1创新设计
设计了基于微孔的Vernier过滤器,实现激光波长的大范围动态调整,支持稳定的单模激光,线宽仅50 Hz,边模抑制功能显著,确保高精度应用的稳定输出。
3.2性能优势
输出功率超过10 mW,侧模抑制比超过70 dB,线宽非常窄,适用于传感、陀螺仪、激光雷达和光学频率计量等相干应用。在C波段和L波段内具有40 nm的宽波长可调谐性,超越传统光纤激光器。
四、应用前景
芯片级铒光纤激光器的微型化和集成化降低了成本,适用于电信、医疗诊断和消费电子产品的便携式高度集成系统,同时推动了激光设备、微波光子学、光频合成和自由空间通信等技术的发展。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30