【光学前沿】芯片级激光器研发取得新进展
自20世纪60年代以来,激光技术的发展为世界带来了革命性的变化,广泛应用于尖端手术、精密制造、光纤数据传输等领域。随着激光应用需求的增长,光纤激光器市场不断扩大,主要用于工业切割、焊接和打标。
一、光纤激光器的特点
光纤激光器使用掺杂稀土元素(如铒、镱、钕)的光纤作为光学增益源,具有高质量光束、高输出功率、高效率、低维护成本和耐用性。它们体积小,是低相位噪声的“黄金标准”,光束稳定性高。
尽管光纤激光器性能优越,但对芯片级光纤激光器微型化的需求不断增长,特别是在保持高相干性和稳定性的基础上。
二、研究突破
EPFL的Yang Liu博士和Tobias Kippenberg教授领导的团队成功制造出首台芯片集成的掺铒波导激光器,性能接近光纤激光器,同时具备宽波长可调谐性和芯片级光子集成的实用性。该研究发表在《自然·光子学》上。
三、技术细节
研究人员采用先进制造工艺,在超低损耗氮化硅光子集成电路上构建了一米长的片上光腔。通过集成微孔谐振器,有效延长光路而不增大物理尺寸。电路中植入高浓度铒离子,与III-V族半导体泵浦激光器集成,激发铒离子产生激光。
3.1创新设计
设计了基于微孔的Vernier过滤器,实现激光波长的大范围动态调整,支持稳定的单模激光,线宽仅50 Hz,边模抑制功能显著,确保高精度应用的稳定输出。
3.2性能优势
输出功率超过10 mW,侧模抑制比超过70 dB,线宽非常窄,适用于传感、陀螺仪、激光雷达和光学频率计量等相干应用。在C波段和L波段内具有40 nm的宽波长可调谐性,超越传统光纤激光器。
四、应用前景
芯片级铒光纤激光器的微型化和集成化降低了成本,适用于电信、医疗诊断和消费电子产品的便携式高度集成系统,同时推动了激光设备、微波光子学、光频合成和自由空间通信等技术的发展。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15