什么是光学轮廓测量技术?光学轮廓测量技术的分类
光学轮廓测量技术是一种利用激光或其他光源替代传统探头进行轮廓测量的方法。理论上,这种技术能够高效地检测到纳米级别的表面粗糙度。在实际应用中,光线与被测表面的方向控制至关重要,且需要严格控制测量环境。此外,被测表面的光线反射效率也是影响测量准确性的关键因素。光学轮廓测量的技术类型包括拼接干涉测量、计算机全息测量、色度共聚焦传感以及多波长干涉测量。
一、拼接干涉测量
此方法通过对非球面表面的子区域进行分段相移干涉测量,收集的数据通过计算机分析整合,并校正误差。拼接干涉测量法在精确度上表现出色,但成本较高,尤其在测量具有陡峭斜坡或与球体几何形状差异较大的非球面时效果有限。

二、计算机全息测量
计算机生成的全息图是另一种适应非球面测量的技术,通过修改干涉仪传输元件上的球形波前,生成与被测光学表面轮廓相匹配的非球面波前。计算机通过在基板上制造特定图案来实现这一过程,该图案用于衍射波前并创建零参考波。计算机全息测量是唯一能够测量高斜率非球面偏离的方法,但每个非球面需要定制新的全息图,限制了其在大规模生产中的应用。此外,该技术不适用于具有拐点的非球面,且在需要精确曲率半径数据时,需进行额外测量。

三、色度共聚焦传感
色度共聚焦传感技术使用白色光源照射被测表面,不同波长的光聚焦在不同的轴向位置,通过分析返回传感器的光波长来确定每个点到光学元件的距离,从而表征光学非球面的形状。
四、多波长干涉测量
该技术首先使用单一波长的光进行初步长度测量,随后逐步增加波长以提高测量精度。多波长干涉测量快速、灵活且精确,但所需设备成本较高。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
