什么是激光烧蚀工艺?激光烧蚀工艺的应用领域
激光烧蚀工艺是一种利用高强度激光束从固体表面移除材料的技术。这一过程通常被归类为材料激光加工的一部分,涉及激光雕刻、切割或钻孔等应用。

一、激光烧蚀工艺广泛应用于多个领域:
1.在激光切割、钻孔和激光铣削等加工过程中,该工艺用于去除特定量的材料。
2.激光雕刻和打标过程中,激光烧蚀用于达到精确的深度,同时保持表面均匀性和低粗糙度。这一过程通常通过一系列激光脉冲实现,每个脉冲相对于前一个脉冲的位置略有移动。
3.在机械零件加工中,激光烧蚀用于创建微纹理表面,以减少润滑部件的摩擦,如内燃机的气缸和活塞。
4.激光表面改性也涉及烧蚀技术,通常在微观尺度上进行。
5.激光清洗利用激光烧蚀去除不需要的材料,这些材料通常比底层基材更能吸收激光辐射。
6.在薄膜光伏电池制造中,激光烧蚀用于绝缘金属层和烧蚀绝缘层。
7.脉冲激光沉积技术利用激光烧蚀将材料沉积到其他位置。
8.激光推进是一种特殊应用,利用烧蚀材料的后坐力进行推进。
9.在材料加工领域之外,激光烧蚀也应用于激光诱导击穿光谱(LIBS),用于光谱分析产生的等离子体羽流的辐射。
二、在医学领域,激光烧蚀工艺同样具有重要应用:
9.激光手术可以精确地去除细微结构,如恶性肿瘤的部分,同时最小化对周围区域的影响。
10.在牙科治疗中,激光烧蚀可用于治疗龋齿,通过选择性去除受影响的组织并保留未受影响的牙齿部分。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
