光学显微镜是什么?
1.光学显微镜是利用光学原理放大微小物体图像的仪器,使人们能够观察和了解微小的结构和细节。
2.光学显微镜主要包括物镜、目镜、反射镜、聚光镜等部件,以及照明源、滤光器、盖玻片、载玻片等附件。光学显微镜的工作原理是通过物镜和目镜放大来自物体的光。物镜产生放大的实像,然后人眼通过目镜观察这个放大的图像。光学显微镜的分辨率受到光波长的限制,通常不大于0.3微米,但可以通过使用紫外光源或油浸技术来提高其分辨率。
3.光学显微镜分为几种类型,包括反射显微镜和透射显微镜。反射显微镜适合观察不透明物体,例如固体物质,而透射显微镜则用于观察透明或薄片样品。光学显微镜也有不同的分类方式,例如,按所用目镜的数量可分为双目显微镜和单目显微镜;按图像是否具有三维感可分为立体视觉显微镜和非立体视觉显微镜;按观察对象可分为生物显微镜和金相显微镜等。

延伸阅读:
光学显微镜具有以下显着特点:
1.光学成像原理:根据光的折射和反射原理,通过物镜和目镜的两种放大作用,可以将肉眼看不见的微小物体放大到人眼可见的程度。
2.放大倍数:放大倍数是可变的,通常由物镜和目镜的放大倍数的乘积决定,提供从几十到几千倍的放大能力。
3.分辨率限制:受光波长的限制,普通光学显微镜的最大分辨率约为0.2微米(约为光波长的一半),这限制了其观察更精细结构的能力。
4.倒立虚像:所形成的像是上下左右颠倒的,是虚像。通过目镜观察时,需要大脑进行逆向处理才能了解图像的实际方向。
5.照明系统:包括光源(如卤素灯或LED)、聚光器(调节光强度和角度)和可调光圈,以确保合适的照明条件。
6.结构可调性:具有焦距调节、光路调节等功能。用户可根据样品性质和观察需要,选择合适的物镜,调整焦距和照明强度。
7.多样性:包括多种专用显微镜变体,如相差显微镜、暗视野显微镜、荧光显微镜等,适合观察不同类型的样品特性。
8.实用性广泛:不仅应用于生命科学、医学、材料科学等领域,还可用于教学演示和工业测试。
9.耐用可靠:光学显微镜机械结构简单,光学元件稳定,通常具有很高的耐用性和较长的使用寿命。
10.观察样本多样化:既可以观察固定样本,也可以观察活体细胞和组织,这对于生物医学领域的研究尤其有价值。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
