【光学前沿】加州大学研究团队发现光的新特性
加州大学欧文分校的研究团队近期在《ACSNano》杂志上发表了一篇论文,报告了一项关于光与物质相互作用方式的新发现。这项由化学家领导的跨学科研究,不仅可能对太阳能发电系统、发光二极管、半导体激光器等领域的技术革新产生积极影响,而且也拓展了我们对光电子学的认识。
研究指出,当光子被限制在硅的纳米级空间中时,它们能够获得类似于固体材料中电子的巨大动量。这一发现意味着,利用硅作为光电子学材料的可能性得到了显著提升,尽管其作为间接半导体的固有缺陷曾限制了其在这一领域的应用。
研究团队的资深作者、兼职教授DmitryFishman表示:“硅是现代电子技术的基石,也是地球上第二丰富的元素。尽管存在一些挑战,但我们的研究为硅在光电子学中的应用开辟了新的可能性。”
为了揭示这种新型光与物质相互作用的机制,研究团队回顾了20世纪初的相关理论。他们发现,限制在纳米级硅晶体中的可见光的动量可以在半导体中产生类似的光学相互作用。这一发现挑战了我们对光与物质相互作用的传统理解,并强调了光子动量在这一过程中的关键作用。
合著者、化学教授EricPotma进一步解释说:“我们在无序硅中发现的光子动量是由一种电子拉曼散射引起的。与传统振动拉曼散射不同,这种电子拉曼散射涉及到电子的不同初始状态和最终状态。”
在实验过程中,研究团队制备了从无定形到晶体清晰度不等的硅玻璃样品,并通过一系列精细调控的实验条件,观察到了电子、光学和热学特性在纳米尺度上的变化。这些实验结果证实了他们在理论上提出的新型光与物质相互作用方式的存在。
Fishman教授总结道:“我们的研究为扩大传统光学光谱的应用范围铺平了道路,使其超越了化学分析中的典型应用,进入结构研究领域。这一新发现的光特性无疑将为光电子学应用开辟一个新的领域。”
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30