激光光镊、光刀及显微Raman 光谱原理简介
光镊、光刀和显微Raman光谱具有一个共同的特点,其结构上一般都是利用高数值孔径的显微物镜将激光束会聚成几百纳米尺度的光点作用在样品上。
它们的不同之处是分别利用激光与样品作用的不同特性,从而产生不同的物理效应。简单地讲,
光镊是利用光与样品粒子作用时的动量转移产生的梯度力,形成稳定的三维光阱,从而无损地束缚和操纵微观粒子。
光刀则是利用高能光子与生物体相互作用产生的光化学反应来消融破坏生物组织。
而光谱则是利用光的(共振或非共振)吸收或散射,通过激光与样品粒子作用产生的发射或散射光的频率、强度和偏振等信息来探测样品的技术。
众所周知,激光具有方向性、相干性和高亮度(高功率密度)三大特点。功率稳定且指向性良好的TEM00模高斯型激光束通过显微物镜后能精确地会聚到样品的某一点上,获得不同的作用效果:1形成三维光阱,实现对粒子的稳定束缚;2形成高能激光微束(光刀),对样品实现切割或打孔;3对样品局部位置进行光谱激发。上述会聚激光束产生的效应主要取决于激光的波长和功率密度。
此外,光镊、光刀和显微Raman光谱系统对激光方向性的要求是相同的,而对激光的波长和功率密度的要求有着显著差别。
短波长的激光具有较高的光子能量,作用到生物体之后会引起化学键的断裂或原子电子能级的跃迁,主要用于光刀和一些需较高激发能量的光谱激发。
在可见光波长范围,生物体发出的荧光能被人眼直接观察,而且大多数生物体的共振Raman光谱也在可见光范围内。因此,可见光范围内的激光常常用于荧光和Raman光谱的激发光。
在近红外和红外波段的激光,由于单个光子的能量较小,且远离生物体(主要是水)的吸收峰,对生物体的损伤很小,是光镊的理想光源。
上述三种技术对激光功率的要求也不相同。用作光镊的激光功率需要根据囚禁粒子的大小和所需束缚力的大小来调节,在其他条件不变的情况下,功率越大光阱力越大。用为光刀的激光既要保证对样本作用点的光裂解作用,又要尽量减少对周闱物质的热效应,因此,常常选用峰值功率高而平均功率低的纳秒甚至飞秒脉冲激光器。而作为Raman光谱的激发光源,所用激光的功率要适中,一般为毫瓦量级。功率过小不利于Raman散射信号的采集,过大又会造成生物组织的光损伤。可见,光镊、光刀及Raman光谱与显微物镜的耦合形式相似,但是作用机理完全不同。
下面分别简要介绍这三种激光设备技术的基本原理。
1、光镊原理
下面以单束激光光摄囚禁介质小球为模型,简要介绍光摄的基本原理。当入射激光与小球作用时,入射光子被小球折射后其动量发生改变,小球对光施加了一个作用力,而光对小球产生的反作用力作用于小球上。若将光子与微粒看成一个孤立系统,其系统动量守恒,即

可以看出光子的动扭的变化,造成小球的动员变化,由冲量定理知,小球将受到一个作用力

当被囚禁的粒子直径远远大于激光波长(a⋙λ)时,符合米氏散射(Miescattering)理论。这时的光阱力可以按照几何光学原理计算。当被囚禁的物体直径远小于激光波长(a⋘λ)时,满足瑞利散射(rayleighscattering)理论,此时光镊力可按照偶极子受力来处理。

2、光刀原理
光刀是利用紫外脉冲激光作用于生物组织,使其产生光消融(photoablation)作用。激光与生物组织的作用效果很大程度上取决于激光的的波长、功率密度和作用时间。如下图所示,激光的不同功率密度和作用时间将产生截然不同的作用效果。

光刀利用高数值孔径的显微物镜将激光高度会聚到样品上,形成大小约0.5λ的衍射极限大小的光斑,从而获得高功率密度的激光微束。光刀典型的激光脉冲宽度为1~10ns,功率密度为10^7-10^8W/cm范围。常用的激光有准分子激光(如ArF、KrF、XeCI、XeF),N2分子激光(波长377nm)和Nd:YAG(波长355nm)纳秒脉冲激光器,重复频率为1-30Hz。

3、Raman光谱原理
Raman光谱来源于样品对入射光的非弹性散射,散射光的频率移动(Raman位移)表征分子的振动频率。因此,Raman光谱被称为分子指纹识别光谱技术。它具有无标记、原位探测的特点,与红外吸收谱不同,Raman光谱不受水溶液影响,光谱带宽比荧光谱窄很多,能够同时对多种化学成分进行定量和定性测量。

描述的过程如下:在光与分子相互作用的过程中,处于电子基态的最低振动态或者振动激发态的分子吸收一个光子、跃迁到某一个激发虚态(低于分子的电子激发态),之后如果该分子又回到原来的振动基态或者激发态,并放出一个同样频率的光子,则该分子吸收和释放的光子的能星相等,这种情况对应于瑞利散射。如果原来处于电子基态中的某一振动态的分子,吸收一个入射光子跃迁到某一个激发虚态,而后回到某一个更高的振动激发态,则此时释放的光子能量小于入射光子的能量,对应的光子的频率小于入射光子的频率,这种情况形成的散射谱线称之为斯托克斯谱线(Stokeslines)。如果原来处于某振动激发态的分子,吸收一个入射光子跃迁到某一个激发虚态,而后回到原来电子基态的某一个更低振动态,则此时释放出的光子的能量大于入射光子的能量,所得光子的频率大于入射光子的频率,这种情况形成的谱线称之为反斯托克斯谱线(antistokeslines)。由玻尔兹曼统计分布可知,正常情况下绝大多数分子处于振动基态,所以,一般斯托克斯谱线强于反斯托克斯谱线。
资料来源:《纳米生物医学光电子学前沿》
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
