调制传递函数—MTF的原理是什么?
在光学领域,调制传递函数(MTF)是衡量光学系统性能的关键参数之一。它不仅能够反映光学系统的成像质量,还能指导光学设计和优化。本文将深入探讨调制传递函数的原理,以及如何通过不同的方法来测试和评估MTF。
首先,直接先看看真正的调制传递函数(ModuleTransferFunction,MTF)在光学上的定义:光学传递函数(OTF)的绝对值被称之为调制传递函数(MTF);OTF的相位被称之为相位传递函数PTF。
因此,理论上要先去计算OTF,才能得到MTF。OTF怎么计算?这个会涉及到傅里叶光学上的知识,是利用点扩散函数(PSF)或线扩散函数(LSF)的傅里叶变换来推导出OTF,包括光学设计软件CODEV 或 Zemax 也是利用软件追迹光线得到PSF再进行Fourier变换将空间域转换为频率域从而得到MTF。示意图如下:

以上是真正的MTF,大家就想问,要测MTF,先得测OTF,要测OTF又得先得到PSF或者LSF。对于纯人工晶状体来说,可以通过标定的十字线经过人工晶状体后再由若干个图像传感器(CCD)来进行十字线的采集,这个其实就是在模拟线扩散函数LSF了,因此测试得来的MTF就最直接反映真正光学上的MTF。那么对于眼睛整体来说,只能基于图像来测试,目前基于图像的“MTF”测试最常见的就是 “ 线对对比度方法” 和 SFR 空间频率响应方法,知道每种方法大致原理的很快就能理解哪种方法最接近 MTF 的理论定义方法。但是有必要提醒大家的是,SFR方法也需要看采用什么样的SFR算法,不是随随便便用个“SFR” ,这里面还是蛮有讲究的。比如现在很多人直接用网上开发的mat3 或 mat2 版本的算法直接计算来用于测试,这其实是有些问题的,它不能用于指定量化的标准。MTF常见的几种测试方法: 1. 大家最为熟悉的ISO12233老版本chart,就是看多少条线的那个chart,可以说就是基于此种方式。严格来讲,这种方法称为对比度传递函数CTF 更为准确,不应该叫做MTF。因为它实际上计算的是对比度,和上述的MTF理论方法是不一致的。但是此种方法的优点就是简单,算法也简单。但缺点就是只能测试单一频率下的对比度,对测试环境要求非常高,比如光源亮度的变化,曝光的变化对结果有较大的影响,数据精度稳定性得不到保证。

2. 西门子星图,这种方法虽然能通过放射状不同频率的线条来模拟得到MTF(针对频率)。但是呢,缺点也很明显,每个宫格占用较大区域的取值范围,也就是说测试的是某一大片区域的清晰度情况,对定点测试能力明显不足;还有个缺点就是没有方向性。但是图像的水平方向和垂直方向的清晰度是不一样的,因为人工晶状体在设计时MTF就有切线和矢状之分,人工晶状体光学面的像散问题造成不同方向上的清晰度不一致,此星图方法不能很好反映此种问题。

拓普康的KR-1W视觉分析系统用的就是切线及矢状MTF分析。

而iTrace则使用的是单一线条表示MTF。

3.SFR (SpatialFrequencyResponse,空间频率响应)
这才是我们推荐的方法,可以是制定管控的量化标准,我们强调一定要原始图像上,因为双图像信号处理器(ImageSensorProcessor,ISP)对其有很大的影响, ISP其实只是提升锐度而非清晰度。管控好原始数据,就不会存在问题,因为一致性问题来自于硬件而非算法。SFR 大致原理如下:– 每行对边界数据进行求导累积组合成一个单一的数据,这个数据就是模拟的线扩散函数– 对结合的线扩散函数数据进行傅里叶变换,即为SFR。

从以上的各个方法的概述来看,最能模拟光学上MTF测量仪的方法就是SFR。
通过上述分析,我们可以得出结论,调制传递函数(MTF)是光学系统性能的重要指标,它能够全面地反映系统的成像质量。在实际应用中,选择合适的测试方法至关重要。SFR方法因其能够提供量化标准和对原始数据的管控,被认为是模拟光学上MTF的最佳选择。然而,无论是使用ISO12233标准、西门子星图还是SFR方法,都需要考虑到测试环境、设备精度和算法选择等因素,以确保测试结果的准确性和可靠性。随着技术的发展,未来可能会有更多先进的测试方法出现。
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
-
无透镜成像技术的原理、发展与应用
无透镜成像,本质上是一种不依赖传统光学透镜,通过光学编码与算法解码相结合的方式,实现物体图像重建的计算成像技术。与传统成像技术“物理聚焦成像”的核心逻辑不同,无透镜成像以“计算重构”替代“透镜聚焦”,摆脱了对高精度透镜及复杂光学装调系统的依赖,通过前端光学编码记录光场信息,后端算法解码重构清晰图像,实现了成像系统的微型化、低成本化与功能多元化。
2026-02-11
