全自动定心车床工作原理
全自动定心车床跟大多数的定心仪一样都是采用旋转镜片的方式来确定镜片的光轴和机械轴,检测镜片的偏心的同时并车削镜片的镜座。以检测和加工一体的这种方式,定心精度可以最高达到0.5μm。


图1.镜组的镜片的光轴不在一条直线上;镜片间隔也不正确
如图1所示,当镜头组的3个镜片的光轴不在一条直线且镜片间隔与理论值也相差较远时,该镜头的成像质量较差。一个优秀的成像质量较好的镜头,它的镜片的光轴应该尽量在一条直线上且镜片间隔与理论值应该相差较小。如图2所示。

图2.镜组的镜片的光轴在一条直线上;镜片间隔正确
全自动定心车床的工作原理可以用图3来大致说明。光学元件加工后,不进行定心磨边,而是直接用军用级(-40~+125℃)的玻璃-金属胶将它与机械座进行一体化胶合。把镜片的镜座放在自由度极高的样品调节机构上,此时镜片要已经放置在镜座上。这时ATS200检测镜片的光轴与ATS200本身的主轴的偏心,软件里显示出该偏心并通过样品调节机构自动调整镜座的空间位置,使其偏心最小,此时镜片的光轴与主轴基本重合。然后根据实际光学加工零件的尺寸公差和光学材料的折射率和阿贝数,让光学设计重新优化调整系统间隔和定位精度。

图3
接着进入到加工工序,根据优化结果最后对光学零件机械座进行外圆、厚度和角度的修削加工,使尺寸间隔和公差控制在µm级精度。镜片的镜座还是在旋转,并用微米级驱动高精度高硬度的车刀车削镜座外缘。先车削镜座的上表面接着车削侧面最后在车削底面。加工完毕后,仪器使用标准的偏心检测系统和非接触式光学位移传感器进行检测,偏心检测系统采用高精度的自准直仪和光学位移传感器来确保精度。然后根据实际光学加工零件的尺寸公差和光学材料的折射率和阿贝数,让光学设计重新优化调整系统间隔和定位精度。


图4
全自动光学定心车工作原理的中心思想是让光学设计、光学加工和光机装校构成一个闭合反馈的研制链,合理分配指标和公差,使光学系统达到最佳的整体指标,同时降低整体研制成本。
-
镜头色差成因及校正技术解析:ED镜片与APO复消色差系统
在光学成像领域,色差是影响镜头成像质量的核心问题之一。尤其是在长焦拍摄、广角边缘成像或逆光、大光比等复杂场景下,画面中出现的紫边、绿边等色边现象,以及颜色浸润、边缘模糊等问题,本质上均为色差(ChromaticAberration,简称CA)导致的成像偏差。本文将系统解析色差的物理本质、产生机制,深入探讨普通镜片组合、ED镜片及APO复消色差三种校正方案的技术原理与优劣特性,并澄清行业内关于APO镜头与锐度的认知误区。
2025-12-15
-
无干涉机制赋能宽带片上角动量复用:150纳米带宽芯片技术实现
在信息技术向超高容量、微型化方向持续演进的当下,光的角动量复用技术凭借其物理正交特性,已成为破解数据传输与存储领域性能瓶颈的关键技术路径。然而,传统基于干涉法的探测方案受限于器件体积与带宽特性,难以满足芯片级集成应用的核心需求。近日,一项发表于《Science》的研究提出了无干涉角动量复用创新方案,通过设计新型纳米环孔径结构,成功实现150纳米带宽的片上并行复用,为微型化纳米光子器件的研发与应用开辟了全新路径。
2025-12-15
-
多组间隔镜片镜头的定心装配与空气间隔控制技术
在精密光学镜头(如安防监控镜头、工业检测镜头、高端成像镜头等)中,多组带空气间隔的镜片是实现高清成像的核心结构。镜片光轴的同轴度与空气间隔的精准度直接决定镜头的分辨率、像差校正效果等关键指标——若光轴偏移,会导致成像模糊、畸变;若空气间隔偏离设计值,则会破坏光学系统的共轭关系,影响画质还原。针对这类镜头,数控定心车削技术结合闭环反馈装配体系,已成为实现高精度定心装配与空气间隔控制的主流方案。
2025-12-15
-
放大的自发辐射(ASE)与受激辐射的核心机制及差异解析
在量子电子学与激光物理领域,光辐射机制的特性直接决定了光学器件的性能与应用场景。放大的自发辐射(Amplified Spontaneous Emission,ASE)作为介于自发辐射与受激辐射之间的关键光放大过程,其物理本质与两类基础辐射机制的差异,是理解光电子技术原理的核心前提。本文基于量子光学基本理论,系统梳理三者的物理机制、形成过程及核心差异,为相关领域的理论研究与技术应用提供参考。
2025-12-15
