无线激光通信技术的应用
无线激光通信技术有着广泛的应用领域,在许多领域发挥着重要作用。

1、无线激光通信技术非常适合在城域网中应用,它结合了光纤通信和微波通信的优点。当接入条件不满足或带宽不足时,无线激光通信可以提供高效的接入解决方案。例如,当通信链路跨越高速公路、河流、拥挤的城区等复杂地形时,由于地理限制而无法铺设光纤线路。无线激光通信成为解决这一问题的有效手段。
2、无线激光通信技术在解决综合业务接入“最后一公里”问题方面也表现出色。对于智能小区的宽带接入、大型企业的Intranet互联、大客户的宽带接入,无线激光通信可以提供快速、灵活的解决方案,支持2Mbit/s至622Mbit/s的带宽。
3、无线激光通信技术还具有抗干扰能力强、安全性高、通信速率高、传输速度快、频段选择方便、信息容量大等优势。由于激光束集中,携带大量信息,能量利用率高,使得发射机和接收机体积更小、重量更轻,更容易携带卫星等空间探测器。这些特点使得无线激光通信在军事和民用领域都具有巨大的战略需求和应用价值。
延伸阅读:
无线和宽带是通信最重要的两个发展方向。无线激光通信具有“无线+宽带”的优势。近年来受到广泛关注,成为新的传播热点。国内外多家研究机构和公司相继推出相关产品。随着通信信息需求逐年增长,无线激光通信以其独特的优势受到了极大的关注。通过与无线电通信和光纤激光通信的比较,可以清楚地看到无线激光通信的优势。
无线光通信技术作为一种新兴的通信接入技术,具有无线传输和大容量数据回传的优势,它可以在指定方向上传输数十米至数千米的数据,而无需铺设额外的传输线路。一定范围内的有效通信,与微波通信、光纤通信等其他通信技术相比,具有以下优势:
1、频带宽、速率高、容量大。
2、通讯质量好,抗电磁干扰和抗辐射能力强。
3、天线体积小,架设灵活便捷,实施成本低。
4、组网方便。
5、无需频率许可,频谱资源丰富。
6、传输安全性和保密性好。
7、技术成熟,成本相对较低。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
