全息激光光栅的特点
随着全息激光技术的发展,出现了激光干涉摄影产生的衍射光栅,这种光栅称为全息光栅。
在磨好的光栅毛坯上均匀地涂上一层光敏物质,然后在同一单色光源发出的两束激光束的干涉场中曝光。感光层上记录着明暗相等的干涉条纹。将暴露的坯基浸入特殊溶液中,涂层各部分因暴露量不同而受到不同程度的侵蚀。结果,在坯基上出现相当于干涉条纹的凹槽线,最后在真空中镀上反射铝膜和保护膜制成全息光栅。
全息光栅的特点是:
1. 无重影线,杂散光极少。
2、衍射效率低,全息光栅的沟槽形状通常为近似正弦波形,这种沟槽形状不具备闪耀条件,没有明显的闪耀特征。据说,采用“离子刻刻”技术的全息光栅大大提高了光栅的衍射效率。
3. 高分辨率。由于全息技术大大增加了光栅线总数,因此色散率和分辨率也得到了很大的提高。
延伸阅读:
以下是全息激光光栅的主要应用和作用:
1.全息和医疗诊断:全息激光光栅可用于记录物体的三维图像,使观察者通过照明光源看到物体的真实3D图像。这在医学诊断领域具有重要的应用价值,通过获取患者身体部位的三维图像,医生可以更准确地分析和诊断病情。
2.光全息存储:全息激光光栅在光全息存储技术中发挥着关键作用。它利用全息光栅来记录和存储大量信息,与传统光存储介质相比,全息光存储具有更大的存储容量和更快的读写速度。这对于需要处理大量数据或者需要快速访问数据的应用场景尤其重要。
3.激光干涉测量:全息激光光栅也可用于激光干涉测量。通过测量光束的干涉图样,可以获得被测物体的形状、表面粗糙度等参数。这为科学研究、工程应用和质量控制提供了有效的工具。
4.光谱分析与光通信:全息激光光栅作为光谱分光元件,具有光谱无鬼线、杂散光少、分辨率高、有效孔径大、生产效率高、价格低廉等优点。因此被广泛应用于科研、教学、产品开发的各种光栅光谱仪中。同时,在光通信中,全息激光光栅可以用作分束器、光互连器、耦合器和偏转器,实现光信号的传输和处理。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30