全息激光光栅的特点
随着全息激光技术的发展,出现了激光干涉摄影产生的衍射光栅,这种光栅称为全息光栅。
在磨好的光栅毛坯上均匀地涂上一层光敏物质,然后在同一单色光源发出的两束激光束的干涉场中曝光。感光层上记录着明暗相等的干涉条纹。将暴露的坯基浸入特殊溶液中,涂层各部分因暴露量不同而受到不同程度的侵蚀。结果,在坯基上出现相当于干涉条纹的凹槽线,最后在真空中镀上反射铝膜和保护膜制成全息光栅。

全息光栅的特点是:
1. 无重影线,杂散光极少。
2、衍射效率低,全息光栅的沟槽形状通常为近似正弦波形,这种沟槽形状不具备闪耀条件,没有明显的闪耀特征。据说,采用“离子刻刻”技术的全息光栅大大提高了光栅的衍射效率。
3. 高分辨率。由于全息技术大大增加了光栅线总数,因此色散率和分辨率也得到了很大的提高。
延伸阅读:
以下是全息激光光栅的主要应用和作用:
1.全息和医疗诊断:全息激光光栅可用于记录物体的三维图像,使观察者通过照明光源看到物体的真实3D图像。这在医学诊断领域具有重要的应用价值,通过获取患者身体部位的三维图像,医生可以更准确地分析和诊断病情。
2.光全息存储:全息激光光栅在光全息存储技术中发挥着关键作用。它利用全息光栅来记录和存储大量信息,与传统光存储介质相比,全息光存储具有更大的存储容量和更快的读写速度。这对于需要处理大量数据或者需要快速访问数据的应用场景尤其重要。
3.激光干涉测量:全息激光光栅也可用于激光干涉测量。通过测量光束的干涉图样,可以获得被测物体的形状、表面粗糙度等参数。这为科学研究、工程应用和质量控制提供了有效的工具。
4.光谱分析与光通信:全息激光光栅作为光谱分光元件,具有光谱无鬼线、杂散光少、分辨率高、有效孔径大、生产效率高、价格低廉等优点。因此被广泛应用于科研、教学、产品开发的各种光栅光谱仪中。同时,在光通信中,全息激光光栅可以用作分束器、光互连器、耦合器和偏转器,实现光信号的传输和处理。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
