激光虚拟键盘的设计与实现方法
1.随着计算机技术的发展和普及,键盘作为计算机的重要输入设备,一直发挥着不可替代的作用。无论是数据的输入还是控制信号的传输,都离不开键盘。而且,在可预见的一段时间内,键盘将是不可或缺的。然而,传统键盘体积庞大,不方便携带,无法满足移动终端对输入设备的需求。因此,有必要设计一种体积小、便于携带、易于操作的虚拟键盘设备来替代传统的机械键盘。这种虚拟键盘设备需要满足:①亮度高,在室内正常照明条件下可以显示清晰的键盘图像; ② 稳定性和安全性高,可长时间稳定运行,不会对人体造成伤害; ③成本低、易于推广这三个方面要求它取代传统的机械键盘。

2.激光光源具有单色性好、方向性强、亮度高的特点。因此,本文设计了一种基于激光投影、红外激光定位和图像分析技术的激光虚拟键盘系统,并阐述了激光虚拟键盘的结构和工作原理。基于该原理,建立了实验系统,验证了系统的准确性、实时性和稳定性。实验证明,激光虚拟键盘可以完全替代机械键盘作为电脑和移动设备的输入设备。
延伸阅读:
激光虚拟键盘是一种没有实际物理按键的键盘,它使用激光将键盘图案投影到用户的工作表面上。下面详细说明激光虚拟键盘的结构和工作原理。
一.激光虚拟键盘主要由以下模块组成:
1.投影模块:该模块负责将所需的键盘界面模板投影到相邻的界面面上。这通常是通过专门设计的高效全息光学器件和红色二极管激光器来实现的。
2.微照明模块:该模块负责生成红外照明平面并使其与界面表面保持平行。这些光线照射在表面上方几毫米处,用户无法直接看到。
3.传感器模块:该模块包含红外滤光片和CMOS图像传感器。当用户与界面表面交互时,反射光首先经过红外滤光片,然后反射到 CMOS 图像传感器。
二.激光虚拟键盘的工作原理主要是基于红外激光和光学传感器:
1.模板创建和投影:投影模块首先生成键盘的模板并将其投影到用户的工作台面上。
2.参考面照明:微照明模块产生平行于界面面的红外照明平面。这些射线位于表面上方几毫米处,用户无法直接看到。
3.按键检测和坐标映射:当用户的手指触摸界面表面上的虚拟按键位置时,按键旁边的平面会反射光线。这些反射光线被传感器模块中的红外滤光片接收,并进一步反射到CMOS图像传感器。传感器芯片(虚拟接口处理核心)可以实时确定反射光的位置,从而确定用户点击的是哪个虚拟按键。
4.按键信号处理:内置处理核心同时跟踪多个反射,因此可以同时处理多个按键输入和光标控制。一旦检测到用户的按键意图,激光键盘就会通过无线或有线方式向计算机或其他设备发送相应的按键信号。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
