激光加工与机械加工的对比
激光,全称是受激辐射光放大,英文全称是:Light Amplification by Stimulate Emission of Radiation;缩写为:Laser。它是一种新型光源,具有其他光源无法比拟的相干性、单色性、方向性和高输出功率等特点。

将激光聚焦到一点,焦平面上的功率密度可达105-1013w/cm2.激光焊接利用激光束优良的方向性和高功率密度来进行工作。激光束通过光学系统聚焦在很小的区域上,在很短的时间内,在焊接区域形成能量高度集中的局部热源区域,从而熔化被焊物体,形成牢固的焊点和焊缝。
与传统机械加工相比,激光加工具有以下特点:
1、处理速度快;
2、热变形和热影响区小(适合加工高熔点、高硬度、特殊材料);
3、零件可进行局部热处理;
4、加工形状复杂的零件和微小零件,也可在真空中加工;
5、加工无噪音,对环境无污染;
6、与自动控制和计算机技术相结合,易于实现自动化;
7、由于加工方法先进,可以改进现有的产品结构和材料。
延伸阅读:
激光加工与机械加工在定义、原理和应用方面存在显着差异。
1、激光加工是利用高功率密度激光束照射工件,利用光能的热效应对材料进行焊接、钻孔和切割的工艺过程。基本原理主要是激光热加工和激光冷加工。激光热加工主要是利用激光能量产生的热效应使物体温度升高,引起相变、熔化或汽化等来达到加工目的。主要用于金属或非金属材料的焊接和切割。激光冷加工利用较短波长的激光束引起和控制材料的化学反应,主要用于半导体工业。
2、机械加工是通过机械设备改变工件外部尺寸或性能的过程。根据加工方法不同,可分为切削加工和压力加工,涵盖铸造、锻造、冲压、焊接等多种工艺。机械加工通常在室温下进行,不会引起工件的化学或物理相变,即冷加工。但在某些情况下,也可能在高于或低于正常温度下进行,引起工件发生化学或物理相变,即热处理。
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
-
拉曼光谱技术的原理、应用及发展挑战
拉曼光谱技术作为一种基于拉曼散射现象的分子结构分析手段,凭借其非破坏性、高特异性及快速检测的核心优势,已在科研探索、工业生产、医疗健康等多个领域建立起不可替代的技术地位。该技术通过捕捉物质分子的振动“指纹”信息,为物质组成鉴定、结构表征及性能分析提供了精准的科学依据,推动了多学科领域的技术革新与发展。
2025-11-17
-
香港科大在量子点发光二极管去的突破性进展,引领下一代显示照明革新
近日,香港科技大学(HKUST)工程学院研究团队在量子棒发光二极管(QR-LEDs)领域取得重大技术突破,其研发的红色QR-LEDs实现创纪录的效率水平,相关研究成果已发表于国际顶级学术期刊《先进材料》(AdvancedMaterials),为下一代显示与照明技术的升级迭代奠定了重要基础。
2025-11-14
