激光加工与机械加工的对比
激光,全称是受激辐射光放大,英文全称是:Light Amplification by Stimulate Emission of Radiation;缩写为:Laser。它是一种新型光源,具有其他光源无法比拟的相干性、单色性、方向性和高输出功率等特点。
将激光聚焦到一点,焦平面上的功率密度可达105-1013w/cm2.激光焊接利用激光束优良的方向性和高功率密度来进行工作。激光束通过光学系统聚焦在很小的区域上,在很短的时间内,在焊接区域形成能量高度集中的局部热源区域,从而熔化被焊物体,形成牢固的焊点和焊缝。
与传统机械加工相比,激光加工具有以下特点:
1、处理速度快;
2、热变形和热影响区小(适合加工高熔点、高硬度、特殊材料);
3、零件可进行局部热处理;
4、加工形状复杂的零件和微小零件,也可在真空中加工;
5、加工无噪音,对环境无污染;
6、与自动控制和计算机技术相结合,易于实现自动化;
7、由于加工方法先进,可以改进现有的产品结构和材料。
延伸阅读:
激光加工与机械加工在定义、原理和应用方面存在显着差异。
1、激光加工是利用高功率密度激光束照射工件,利用光能的热效应对材料进行焊接、钻孔和切割的工艺过程。基本原理主要是激光热加工和激光冷加工。激光热加工主要是利用激光能量产生的热效应使物体温度升高,引起相变、熔化或汽化等来达到加工目的。主要用于金属或非金属材料的焊接和切割。激光冷加工利用较短波长的激光束引起和控制材料的化学反应,主要用于半导体工业。
2、机械加工是通过机械设备改变工件外部尺寸或性能的过程。根据加工方法不同,可分为切削加工和压力加工,涵盖铸造、锻造、冲压、焊接等多种工艺。机械加工通常在室温下进行,不会引起工件的化学或物理相变,即冷加工。但在某些情况下,也可能在高于或低于正常温度下进行,引起工件发生化学或物理相变,即热处理。
-
超快激光加工在精密制造领域的技术突破与发展
在精密制造领域,超快激光加工技术凭借飞秒、皮秒级超短脉冲的独特优势,正重塑微纳制造的边界。其以极高的时间分辨率与空间精度,成为材料高精度蚀刻、钻孔、切割及微观结构制备的前沿技术。而实现加工质量的精准控制与精密制造系统的优化升级,是推动该技术规模化应用的核心命题。
2025-07-08
-
硅光子学波导技术中的突破集成瓶颈的核心要素
在光学通信与微电子光学互连领域,硅光子学作为一项新兴技术,依托高度成熟的硅半导体技术,有望构建低成本、高集成度的电子-光子融合平台,实现超紧凑光子器件与电子电路的高效协同。而这一平台的核心支撑,是能够满足特殊集成要求的波导系统。
2025-07-08
-
突破性高Q手性超表面:实现角度调控的宽带光学响应
在现代光子学研究中,手性超表面因其独特的光与物质相互作用特性,在生物传感、量子光学等领域展现出巨大应用潜力。近期,发表于《AdvancedOpticalMaterials》的一项研究提出了一种硅基手性超表面设计,通过巧妙的结构设计与对称性调控,实现了兼具高Q因子、强手性响应及宽带可调谐特性的突破性进展。
2025-07-08
-
光学镜片表面麻点判定标准详解
在光学镜片的质量评估体系中,表面光洁度为核心指标之一,麻点作为典型表面缺陷,其判定需依据规范化标准。当前行业内普遍采用美国军用标准MIL-PRF-13830B作为基准,该标准对麻点的计量方式、等级划分及合格判定规则作出了明确规定,以下从基础定义到具体规则展开说明。
2025-07-08