什么是光子芯片?
1.光子芯片利用光波(电磁波)作为信息传输或数据计算的载体,它们一般依靠集成光学或硅基光电子学中的介质光波导来传输导模光信号,并将光信号与电信号的调制、传输、解调等集成在同一基板或芯片上。
2.高速数据处理和传输构成了现代计算系统的两大支柱,而光子芯片为信息、传输和计算提供了重要的连接平台,可以显着降低信息连接所需的成本、复杂性和功耗 。随着硅基光电子学和半导体加工技术的不断发展,光子与电子混合集成的光电芯片可以进一步提高器件性能、降低成本,以满足日益增长的高带宽互连需求。

延伸阅读:
光子芯片有着广泛的应用领域,其高速并行性和低功耗使其在很多领域都有着良好的表现。
1.光子芯片广泛应用于通信领域。可用于光纤通信,实现高速数据传输和长距离信号传输。在数据中心互连方面,光子芯片可以提供更大的带宽和更低的延迟连接,有利于数据中心之间高效的数据交换和处理。此外,光子芯片还应用于高性能计算领域,可以大大提高计算速度。
2.光子芯片在生物医学领域也发挥着重要作用。可用于显微镜成像,提供生物组织的高清图像,帮助医学研究和诊断。此外,光子芯片还可用于激光治疗,为医疗领域提供新的治疗方法。
3.光子芯片还广泛应用于激光雷达、微波滤波器、毫米波发生、天体光谱仪校准、低噪声微波发生等领域。在光学相关断层扫描中,光子芯片可以观察生物组织的结构。同时也可以作为数据中心交换机进行数据控制。
随着芯片技术的升级迭代,光子芯片有望成为新一代信息领域的底层技术支撑,催生大量新应用和产业,市场前景巨大。与电子芯片相比,光子芯片具有更高的计算速度和传输速率,以及更低的功耗。这使得光子芯片制造过程中不再需要使用极其高端的光刻机,降低了生产成本,为我国芯片产业自主发展提供了新的路径。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
