什么是布拉格反射镜?
1.布拉格镜是一种利用多层薄膜的周期性结构对特定波长的光实现高反射率的光学器件。这种镜子的设计基于布拉格衍射原理,由英国物理学家威廉·劳伦斯·布拉格和他的儿子威廉·亨利·布拉格在20世纪初发现。
2.布拉格反射器通常由一系列交替堆叠的具有不同折射率的材料薄层组成。每层的厚度都经过精心设计,使得当入射光垂直于薄膜表面且满足布拉格条件时,即:

2dsinθ=mλ
其中:
d是相邻两层材料界面之间的距离(称为布拉格周期),
θ是入射角,
λ是入射光的波长,
m是整数,并且表示布拉格衍射级次。
当满足此条件时,从每一层反射的光会发生相长干涉,导致特定波长的光被强烈反射回来,而其他波长的光则反射很弱或没有反射。因此,布拉格反射镜可作为高选择性反射滤波器,广泛应用于激光谐振腔、光纤通信、光电子器件、红外探测器等众多领域。
延伸阅读:
布拉格反射镜应用广泛,特别是在光学和光电子领域,以下是一些主要应用:
1.激光器结构:布拉格反射镜广泛应用于半导体激光器(如垂直腔面发射激光器)和光纤激光器中作为内反射镜或外腔镜,形成谐振腔结构,保证激光器在特定波长下能够高效放大和输出。
2.光学滤波器:由于其选择性反射特性,布拉格反射镜可设计为窄带滤波器,用于光谱测定、光谱分析和其他需要精确控制入射光波长的应用。
3.光纤通信:在光纤通信系统中,布拉格反射器可用作掺铒光纤放大器(EDFA)中的增益平坦滤波器,以提高信号质量,也可用作DWDM(密集波分复用)系统中的通道定义组件。
4.光栅耦合器:布拉格反射器可制成布拉格光栅,用作将光耦合进或耦合出光纤的装置。该光栅耦合器对波长选择性高,适用于多模光纤或单模光纤的集成光学系统。
5.量子级联激光器:在某些红外和太赫兹频段工作的量子级联激光器也使用布拉格反射镜来实现内部光反馈。
6.生物传感和成像:布拉格反射镜可用于生物传感器来创建表面等离子共振(SPR)传感器,用于检测和测量生物分子之间的相互作用。
7.科研仪器:在科研实验中,布拉格反射镜用于各种精密光学测量设备,如光谱仪、干涉仪等,用于光束整形、波长筛选和相干光源的构建。
总之,布拉格反射镜因其独特的光学特性,在现代光学技术、激光技术和电信行业中发挥着不可或缺的作用。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
