什么是布拉格反射镜?
1.布拉格镜是一种利用多层薄膜的周期性结构对特定波长的光实现高反射率的光学器件。这种镜子的设计基于布拉格衍射原理,由英国物理学家威廉·劳伦斯·布拉格和他的儿子威廉·亨利·布拉格在20世纪初发现。
2.布拉格反射器通常由一系列交替堆叠的具有不同折射率的材料薄层组成。每层的厚度都经过精心设计,使得当入射光垂直于薄膜表面且满足布拉格条件时,即:
2dsinθ=mλ
其中:
d是相邻两层材料界面之间的距离(称为布拉格周期),
θ是入射角,
λ是入射光的波长,
m是整数,并且表示布拉格衍射级次。
当满足此条件时,从每一层反射的光会发生相长干涉,导致特定波长的光被强烈反射回来,而其他波长的光则反射很弱或没有反射。因此,布拉格反射镜可作为高选择性反射滤波器,广泛应用于激光谐振腔、光纤通信、光电子器件、红外探测器等众多领域。
延伸阅读:
布拉格反射镜应用广泛,特别是在光学和光电子领域,以下是一些主要应用:
1.激光器结构:布拉格反射镜广泛应用于半导体激光器(如垂直腔面发射激光器)和光纤激光器中作为内反射镜或外腔镜,形成谐振腔结构,保证激光器在特定波长下能够高效放大和输出。
2.光学滤波器:由于其选择性反射特性,布拉格反射镜可设计为窄带滤波器,用于光谱测定、光谱分析和其他需要精确控制入射光波长的应用。
3.光纤通信:在光纤通信系统中,布拉格反射器可用作掺铒光纤放大器(EDFA)中的增益平坦滤波器,以提高信号质量,也可用作DWDM(密集波分复用)系统中的通道定义组件。
4.光栅耦合器:布拉格反射器可制成布拉格光栅,用作将光耦合进或耦合出光纤的装置。该光栅耦合器对波长选择性高,适用于多模光纤或单模光纤的集成光学系统。
5.量子级联激光器:在某些红外和太赫兹频段工作的量子级联激光器也使用布拉格反射镜来实现内部光反馈。
6.生物传感和成像:布拉格反射镜可用于生物传感器来创建表面等离子共振(SPR)传感器,用于检测和测量生物分子之间的相互作用。
7.科研仪器:在科研实验中,布拉格反射镜用于各种精密光学测量设备,如光谱仪、干涉仪等,用于光束整形、波长筛选和相干光源的构建。
总之,布拉格反射镜因其独特的光学特性,在现代光学技术、激光技术和电信行业中发挥着不可或缺的作用。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30