LED的三大特点介绍
1.LED光学特点:
LED提供半宽度较大的单色光,由于半导体的能隙随温度升高而减小,因此其发射的峰值波长随温度升高而增大,即光谱红移,温度系数为+2~3A/.LED发光亮度L与正向电流近似成正比:K为比例系数。随着电流的增加,发光亮度也大约增加。另外,发光亮度还与环境温度有关。当环境温度较高时,复合效率降低,发光强度降低。
2.LED热特点:
在小电流下,LED的温升并不明显。如果环境温度高,LED的主波长会红移,亮度下降,发光的均匀性和一致性变差。特别是点阵、大显示屏的温升对LED的可靠性和稳定性影响更为显着,因此热设计至关重要。
3.LED电气特点:
对于电流控制器件,负载特性与PN结的UI曲线类似,正向导通电压很小的变化就会引起正向电流很大的变化(指数级别),而反向漏电流很小,有反向击穿电压。实际使用中应根据情况进行选择。 LED正向电流随温度升高而变小,具有负温度系数。 LED消耗电能,其中一部分转化为光能,这就是我们所需要的。其余部分转化为热能,导致结温升高。
延伸阅读:
1.LED发光原理:
当电流通过芯片时,N型半导体中的电子与P型半导体中的空穴在发光层中猛烈碰撞复合,产生光子,并以光子的形式发射出能量。LED灯是内部含有固体半导体的发光二极管,可以将输入的半导体转化为光能。另外,LED灯内部的半导体由三部分组成,包括p型半导体、n型半导体和1至5周期量子阱。
2.LED的核心发光材料:
主要由元素周期表中的宽带隙半导体材料、三至四族化合物组成。相关元素主要是镓、砷、铟,其中镓是一种银白色金属,最外层有三个电子。如果在硅基体中掺杂一点镓,晶体结构中一颗镓取代了一颗硅,共价键中就少了一个电子,多了一个空穴,形成了P型半导体。 LED的核心发光材料中,最具代表性的是GaN,它是第三代半导体材料,具有更宽的能隙、更小的介电常数和更好的导热性,它是制造高亮度蓝色LED和蓝色激光器的首选材料的理想选择。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30