球径仪工作原理-球径仪SpheroMeter的结构工作原理
球径仪SpheroMeter简介:
北京全欧的SpheroMeter系列全自动接触式球径仪用于精确测量凸面、凹面、球面元件(透镜、对样板、球体等)的曲率半径。环式球径仪测量球面曲率半径的原理是通过测量某部分球面对应的矢高及弦半径,计算该球面的曲率半径。北京全欧的数字球径仪是市场上出现最早,功能最全、技术最稳定的曲率半径测量仪,被全球数百家光学公司和实验室使用。北京全欧高精度全自动球径仪可用于高精度半径测量,也可用于校准测试板,代表了当今的行业标准。此外,北京全欧高精度全自动球径仪的长期精度和自动化功能在实验室和制造环境中受到高度评价。
应用:
通过对镜面曲率半径的检测,保障镜片曲率的精度在后续生产装配起决定性作用。
球径仪SpheroMeter工作原理与工作方式
采用矢高法。将样品放在球环上,通过已知的球环直径D,将宝石探针向上触碰到样品待测面测出的失高S,已知小探针直径d,通过如下公式:
R=[D/2)2+S2]/2S±d/2
可以得出被测产品的R值。
欧光科技球径仪产品详情:自动球径仪 全欧欧光 Trioptics SpheroMeter (曲率半径测量测量系统)
-
MIT突破光电芯片封装技术难题:引领下一代计算与通信产业变革
在全球数据流量呈指数级增长的背景下,如何实现光子芯片与电子芯片在单一封装内的高效集成,已成为制约下一代计算与通信技术规模化发展的核心议题。麻省理工学院(MIT)材料科学与工程系ThomasLord讲席教授、微光子学中心主任LionelKimerling指出:“在单一封装内达成光子学与电子学的集成,其战略意义堪比21世纪的‘晶体管’技术。若无法攻克这一核心挑战,该领域的大规模产业化进程将无从推进。”为应对此挑战,MIT新组建了由美国国家科学基金会资助的FUTUR-IC研究团队,项目负责人、MIT材料研究实验室首席研究科学家AnuAgarwal明确表示:“团队的核心目标是构建资源高效的微芯片产业价值链,为行业发展提供底层技术支撑。”
2025-08-29
-
超精密光学镜片的关键制备环节:精密光学镀膜技术的核心价值与应用分析
在超精密光学镜片的全生命周期制造流程中,材料筛选构建基础性能、精密加工保障几何精度、专业测试验证产品质量,而光学镀膜作为最终工序,堪称实现镜片性能跃升的“关键一跃”。该工序并非简单的表面覆盖处理,而是通过在原子尺度上精准调控膜层厚度、材料组成及微观结构,使加工完成的基片满足最终光学系统对超高透射率、超高反射率、特定分光比及极端环境稳定性等核心指标的要求。当前,超精密光学镀膜技术已形成多技术路径并行发展的格局,各技术体系在性能、成本及应用场景上各具特色,共同支撑航空航天、量子科技、高端制造等领域的技术突破。
2025-08-29
-
什么是水复合激光加工技术?高端制造领域热损伤难题的创新解决方案
水复合激光加工技术以水为核心辅助介质,通过“冷却-冲刷-导光”的多机制协同作用,构建了三类差异化技术体系,为精密制造领域提供了覆盖“经济实用”至“高精度高效能”的全场景技术方案,对推动高端制造业高质量发展具有重要意义。
2025-08-29
-
水导激光加工碳化硅高深径比微孔的技术研究与工艺优化
碳化硅作为一种具备高硬度、高耐磨性及优异热学、电学性能的先进材料,在航空航天、半导体器件、新能源装备等高端制造领域应用前景广阔。然而,其硬脆特性使得高深径比微孔(深径比≥10:1)加工面临严峻挑战,传统加工工艺如机械钻孔、电火花加工、超声加工等,普遍存在刀具磨损严重、加工精度低、表面质量差或加工效率不足等问题,难以满足高端领域对碳化硅微孔构件的严苛要求。在此背景下,水导激光加工技术融合激光高能量密度与水射流冷却排屑的双重优势,为突破碳化硅微孔加工瓶颈提供了创新技术路径,相关工艺参数的优化研究对推动该技术产业化应用具有重要意义。
2025-08-28