双光子聚合是什么?
1.双光子聚合是由物质在双光子吸收后引发的光聚合过程。双光子吸收是指物质的分子同时吸收两个光子的过程,它只能在强激光的作用下发生,是强激光作用下光与物质相互作用的现象,属于三阶非线性效应。
2.双光子吸收主要发生在脉冲激光产生的超强激光的焦点处。光路上其他地方的激光强度不足以产生双光子吸收。由于所使用的光的波长较长,能量较低,因此不能发生单光子过程,因此双光子过程具有良好的空间选择性。
3.双光子聚合利用了双光子吸收过程中对材料有很好的穿透性、空间选择性高的特点,在三维微加工、高密度光存储和生物医学等领域具有巨大的应用前景。近年来,它已成为全球高科技领域的一大研究热点。
延伸阅读:
双光子聚合是一种常用于生物医学、纳米技术、材料科学等领域的高分辨率三维打印技术,其原理是基于感光高分子材料对两个或多个激光光子的吸收反应,从而实现对三维打印物体的精确控制,以下是双光子聚合的工作原理:
1.使用激光:双光子聚合通常使用超短脉冲激光,例如飞秒激光。这些激光器在极短的时间内释放高能光子,但它们的脉冲持续时间很短,不会造成材料损坏。
2.光敏聚合物材料:印刷材料通常是光敏聚合物,其中含有可以通过吸收两个或多个激光光子而聚合的分子或化合物。该材料对光的吸收很敏感,只有在暴露于足够高的能量时才会发生化学反应。
3.点对点打印:将激光束聚焦到一个微小的体积内,通常为微米级,然后通过移动打印平台或聚焦光束来实现点对点打印。每个点的材料在光照下都会聚合,从而控制打印的分辨率和准确性。
4.体积构建:通过控制激光束的位置和强度,可以一层一层地构建物体,从而实现3D打印,每一层打印都是通过逐步构建材料堆栈来实现的。
5.非线性效应:双光子聚合基于非线性光学效应,只有当两个或多个光子同时被吸收时,材料才会聚合。这意味着只有当激光焦点处的光密度足够高时才会触发聚合,从而实现极高的分辨率和精度。
双光子聚合技术的优点是可以实现非常高的分辨率和精度,适合微米级和纳米级制造。在生物医学中用于创建复杂的细胞和组织工程结构,在材料科学中用于制备微米材料和纳米结构。该技术具有广阔的应用前景,但也需要高成本的设备和精确的控制。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15