镜面定位仪的原理-镜面定位仪OptiSurf工作原理
镜面定位仪OptiSurf产品简介:
在高精度的光学成像系统中,对于内部镜片厚度及镜片空气间隔的精度有着极高的要求。如何实现既要满足较高的测量精度又不损伤透镜,从而得到高质量的光学系统?全欧光学Trioptics的镜面定位仪OptiSurf就是一款非接触式光学元件中心厚度及空气间隔测试设备。镜面定位仪也称作测厚仪,是基于低相干干涉原理,采用非接触式测量。镜面定位仪典型应用为透镜中心厚度和镜片空气间隔测量,通过测量透镜间空气间隔的尺寸,来控制透镜在系统光轴中的位置。测厚仪是光学系统装调中检测和控制空气间隔理想的工具。
镜面定位仪OptiSurf应用:
-适用范围:沿光轴方向的元件位置、中心厚:透镜、棱镜、平面镜;
-光学装配:透镜位置、空气间隙;
-单件元件控制:厚度与折射率;
-用于光学装配,尤其是镜头组的装配,适合于物镜;
-用于天文学长焦距镜面的调整,精度达微米级;
-用于研发:确定装配中元件的错误位置,测量空气间隙以反馈给光学设计;
-用于生产:在装调过程中测量元件间的距离、平板玻璃厚度监控;
-用于质量控制:校验透镜在抛光前后的中心厚变化、控制镜头的材料、控制生产后的装配。
镜面定位仪OptiSurf原理与工作方式:
镜面定位仪基于近红外光低相干干涉技术,核心是迈克尔逊干涉仪。
1. Source(短相干光源)发出短相干光束,经Coupler(耦合器)分束成两束光,这两束光分别通过Collimators(准直仪)聚焦到Measurement arm(测量臂) 和Reference arm(参考臂)上。
2. 在测量臂段,光束经待测物前后两表面反射产生R1和R2两束反射光;在参考臂段,光束被delay line(延迟线路)中的scan mirror(可扫描的参考镜) 反射。
3.各反射光束经光学光纤返回到Coupler中,此时扫描反射镜反射的光束分别与R1和R2两束光发生干涉产生两干涉信号经Photodiode(光电二级管)转换为电信号再由显示仪显示。
相比较于传统的镜头不良分析,需破坏或拆卸镜头的传统接触式测厚仪,全欧光学的镜面定位仪OptiSurf具有非接触测量、精度高,重复性好、效率高等优点。
欧光科技镜面定位仪OptiSurf产品介绍:OptiSurf®镜面定位仪
-
半导体制造中纳米二氧化硅抛光技术的应用研究:基于化学机械抛光工艺的平整度控制技术
随着半导体器件集成度向3nm及以下制程演进,晶圆表面平整度控制已成为先进制程制造的核心技术难点。本文系统分析化学机械抛光(CMP)工艺中纳米二氧化硅磨料的作用机制,结合形貌调控、介孔改性及元素掺杂等前沿技术,探讨其在提升晶圆表面平整度中的应用路径。研究表明,通过纳米二氧化硅磨料的微观结构设计,可实现抛光速率与表面质量的协同优化,为先进半导体制造提供关键材料支撑。
2025-06-23
-
光的方向调控专家—偏振片的基础原理和实际应用解析
在光学领域中,偏振片就像一位专业的“方向调控师”,能精准控制光的振动方向。从实验室的精密仪器到日常生活中的显示设备,它的应用无处不在。本文将用通俗易懂的语言,带您了解偏振片的工作原理、类型特点和实际应用,为您提供实用的光学知识指南。
2025-06-20
-
掺铒锁模光纤激光器中孤子倍周期现象的新发现:同相和异相振荡的奥秘
锁模光纤激光器就像一台精密的"光脉冲工厂",能产生极短、能量极高的光脉冲,在通信、芯片制造、生物成像等领域大显身手。但它有个棘手问题:输出的光脉冲有时会"节奏混乱",这种不稳定性虽然影响性能,却也藏着有趣的科学现象——比如"倍周期分岔",即光脉冲的变化周期突然变成原来的两倍。
2025-06-20
-
如何通过镜头光圈优化实现视觉成像质量的科学提升?
镜头光圈作为相机光学系统的关键组件,其功能等价于人眼瞳孔的光线传导机制。该结构由金属叶片组合而成,通过调节开口直径实现对入射光量的精确控制。从物理原理来看,光圈数值(即fstop)与实际通光孔径呈反比关系——例如f/2.8的光圈直径是f/16的4倍,这种分数表达体系常因认知惯性导致理解偏差。若以几何模型阐释:fstop数值可视为通光孔径与镜头焦距的比值,该参数直接决定单位时间内抵达图像传感器的光通量,进而影响成像的亮度阈值与景深范围。
2025-06-19