镜面定位仪的原理-镜面定位仪OptiSurf工作原理
镜面定位仪OptiSurf产品简介:
在高精度的光学成像系统中,对于内部镜片厚度及镜片空气间隔的精度有着极高的要求。如何实现既要满足较高的测量精度又不损伤透镜,从而得到高质量的光学系统?全欧光学Trioptics的镜面定位仪OptiSurf就是一款非接触式光学元件中心厚度及空气间隔测试设备。镜面定位仪也称作测厚仪,是基于低相干干涉原理,采用非接触式测量。镜面定位仪典型应用为透镜中心厚度和镜片空气间隔测量,通过测量透镜间空气间隔的尺寸,来控制透镜在系统光轴中的位置。测厚仪是光学系统装调中检测和控制空气间隔理想的工具。
镜面定位仪OptiSurf应用:
-适用范围:沿光轴方向的元件位置、中心厚:透镜、棱镜、平面镜;
-光学装配:透镜位置、空气间隙;
-单件元件控制:厚度与折射率;
-用于光学装配,尤其是镜头组的装配,适合于物镜;
-用于天文学长焦距镜面的调整,精度达微米级;
-用于研发:确定装配中元件的错误位置,测量空气间隙以反馈给光学设计;
-用于生产:在装调过程中测量元件间的距离、平板玻璃厚度监控;
-用于质量控制:校验透镜在抛光前后的中心厚变化、控制镜头的材料、控制生产后的装配。

镜面定位仪OptiSurf原理与工作方式:

镜面定位仪基于近红外光低相干干涉技术,核心是迈克尔逊干涉仪。
1. Source(短相干光源)发出短相干光束,经Coupler(耦合器)分束成两束光,这两束光分别通过Collimators(准直仪)聚焦到Measurement arm(测量臂) 和Reference arm(参考臂)上。
2. 在测量臂段,光束经待测物前后两表面反射产生R1和R2两束反射光;在参考臂段,光束被delay line(延迟线路)中的scan mirror(可扫描的参考镜) 反射。
3.各反射光束经光学光纤返回到Coupler中,此时扫描反射镜反射的光束分别与R1和R2两束光发生干涉产生两干涉信号经Photodiode(光电二级管)转换为电信号再由显示仪显示。
相比较于传统的镜头不良分析,需破坏或拆卸镜头的传统接触式测厚仪,全欧光学的镜面定位仪OptiSurf具有非接触测量、精度高,重复性好、效率高等优点。
欧光科技镜面定位仪OptiSurf产品介绍:OptiSurf®镜面定位仪
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
