单层二维异质结的超快光物理研究获进展
研究团队以大尺寸单层MoS2和ReSe2构筑的Ⅱ类范德华异质结为研究对象,采用自主研发的超快光谱技术,结合理论计算,系统研究了不同时间阶段的非平衡态载流子动力学行为。
近期,中国科学院合肥物质科学研究院固体物理研究所计算物理与量子材料研究部研究人员与南方科技大学、北京大学、广东大湾区空天信息研究院等团队合作,研究了单层MoS2-ReSe2异质结的超快动力学,确认了跨越亚皮秒至数百皮秒不同时间尺度内电荷转移、自由载流子演化及层间激子等弛豫路径及中间过程。相关结果以Identifying the Intermediate Free-Carrier Dynamics Across the Charge Separation in Monolayer MoS2/ReSe2 Heterostructures为题发表在ACS Nano上。
以原子层厚度MoS2等为代表的过渡金属硫族化合物,可构筑出II类能带倾斜的范德华异质结,极大拓展二维材料的物理内涵及其在信息、光电等领域的应用范围。然而,II类二维范德华异质结中诸如电荷转移机制、热电子的面内局域化与扩展化、能量弛豫路径、不同准粒子的相互作用及演化等相关的超快动力学物理图像长期存在争议,深入认识和理解它对器件设计及应用至关重要。
研究团队以大尺寸单层MoS2和ReSe2构筑的Ⅱ类范德华异质结为研究对象,采用自主研发的超快光谱技术,结合理论计算,系统研究了不同时间阶段的非平衡态载流子动力学行为。研究人员利用太赫兹发射光谱,通过飞秒激光诱导的太赫兹脉冲波形,确定沿堆叠方向的超快界面电流形成及电荷转移过程约为170 fs(图1)。借助时间分辨太赫兹光谱,探测异质结面内电荷输运动力学(图2)。对比MoS2/ReSe2异质结及其独立组分的时域和频域光电导谱,发现异质结的太赫兹光电导符合简单的Drude模型,其背散射效应接近零,从而证实对电导率的贡献主要来自高度扩展化的热电子,而非局域化激子,进一步确定了这种热载流子演化为层间激子的特征时间常数(~0.7 ps)及表面俘获过程(~13 ps)。研究人员结合近红外飞秒泵浦-探测反射光谱,探测到MoS2/ReSe2异质结的激子动力学,发现层间激子寿命达到365 ps(图3)。同时,该工作发现通过异质结构筑,可将二维ReSe2中的太赫兹光电导、非线性饱和吸收系数及带间复合寿命分别提升近3倍、5倍及10倍以上,展现出巨大的光电性能调控范围。

图1 不同堆叠顺序的MoS2-ReSe2异质结的太赫兹发射光谱

图2 MoS2-ReSe2异质结太赫兹瞬态光电导谱

图3 MoS2/ReSe2异质结等飞秒泵浦-探测反射光谱
该研究揭示了MoS2/ReSe2异质结中完整的激发态载流子演化和弛豫路径,为认识和理解II类范德华异质结超快动力学提供了新的参考,对基于MoS2/ReX2 (X=Se, S)类的异相异质结体系的光电器件设计和发展具有重要指导意义。
该工作得到了国家自然科学基金委国家重大科研仪器研制项目及面上项目等的支持。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
