哥伦比亚大学研发芯片级高功率频率梳,助力数据中心光源升级
纽约,2025年10月8日—哥伦比亚大学工程与应用科学学院的研究团队研发出一种新技术,无需依赖体积庞大且成本高昂的激光器与放大器,即可构建高功率频率梳。该团队的研究成果实现了频率梳功率向芯片的集成,进而为紧凑式、高功率、多波长光源的开发提供了可能。研究人员认为,所研发的技术方法与系统可应用于先进数据中心——此类数据中心虽已采用光纤链路传输数据,但当前仍普遍依赖单波长激光器。

现任职于XscapePhotonics公司的首席工程师安德斯·吉尔-莫利纳(AndresGil-Molina)指出:“数据中心对具备多波长特性的高性能、高效率光源存在极大需求。我们研发的技术可将高功率激光转化为芯片级的数十个洁净、高功率通道,这意味着可通过单个紧凑型设备替代一列独立激光器,在降低成本、节省空间的同时,为构建更高速、更节能的系统奠定基础。”
该研究工作的源头可追溯至数年前:米哈尔·利普森(MichalLipson)实验室的研究人员曾开展激光雷达技术改进项目,致力于设计可产生更高亮度光束的高功率芯片。最终,研究人员通过向芯片持续注入更高功率,成功获得了芯片级生成的频率梳。
在验证上述进展后,研究人员决定在其系统中采用多模激光二极管。此类激光器已广泛应用于医疗设备、激光切割工具等领域,且具备高光束输出能力;然而,其光束存在“无序性”,难以应用于对精度要求较高的场景。下图示意了高功率微梳源中的衍射元件如何在光谱维度分离梳线。
为解决这一问题,研究人员采用了一种锁定机制,对这一高功率但高噪声的光源进行净化处理。该方法依托硅光子学技术对激光输出进行重塑与净化,最终获得更洁净、更稳定的光束
光束经净化后,芯片的非线性光学特性会将单一高功率光束分解为数十个均匀分布的光谱成分——这正是频率梳的标志性特征。最终形成的系统既整合了工业激光器的原始功率,又具备了先进通信与传感应用所需的精度和稳定性。
研究人员指出,芯片级频率梳的验证为改进当前数据中心所采用的单波长激光器提供了可能性:该技术有望为现代计算系统中对体积要求最严苛、对成本最敏感的部分赋予多光束能力。此外,除数据中心领域外,该芯片还可应用于便携式分光仪、超高精度光学钟、紧凑型量子设备及先进激光雷达系统等场景。
-
平行光管如何精准测量光学系统的五大核心指标
在智能手机成像、卫星遥感探测、自动驾驶环境感知等各类依赖光学技术的场景中,平行光管作为关键检测设备,以模拟无限远目标的核心功能,为光学系统性能量化提供标准化基准。从工业量产的质检流程到尖端科研的校准实验,其在保障光学设备精度与可靠性方面发挥着不可替代的作用,是光学工程领域不可或缺的“精准标尺”。
2025-12-08
-
【光学材料】单晶衍射呈离散斑点、多晶衍射呈同心圆环的机理研究
在材料科学的结构表征领域,透射电子显微镜(TEM)选区电子衍射(SAED)技术是解析晶体材料微观结构的核心手段之一。相同测试条件下,单晶材料的衍射图案表现为离散分布的明亮斑点,而多晶材料则呈现规整的同心圆环,这一现象是晶体内部微观结构特征的直接映射。本文将从衍射基本原理、晶粒取向差异、信号形成机制及特殊情况延伸等维度,系统阐释这一现象的本质规律。
2025-12-08
-
OptiSurf®镜面定位仪如何成为高精度光学测量新标杆?其技术优势与应用价值何在?
测量精度直接决定了光学设备的性能上限。由德国全欧光学TRIOPTICS设计的OptiSurf®镜面定位仪,凭借其非接触式测量技术与卓越的精度表现,成为解决光学元件中心厚度及空气间隔测量难题的理想工具,为光学行业的高精度生产与研发提供了可靠支撑。
2025-12-08
-
热红外检测核心技术解析:热释电与热电堆的原理及应用差异
在红外热探测、气体分析、激光功率监测等现代工业与科研领域,热-电转换技术是实现非接触式温度感知与能量检测的核心。其中,热释电效应与热电堆传感器作为两大主流热红外检测机制,凭借各自独特的物理特性,支撑着不同场景下的精准测量需求。本文将从原理本质、核心特性、应用场景等维度,深入解析两者的技术差异与选型逻辑。
2025-12-08
