剑桥大学发布太赫兹辐射调控新方法,为多领域高端技术突破奠定基础
2025年9月1日,英国剑桥讯——剑桥大学卡文迪许实验室研究团队正式公布一种可在太赫兹(THz,Terahertz)频段实现辐射调控的技术方法。该研究成果或为通信、成像及传感领域的高端技术研发开辟新路径,同时标志着人类在开发太赫兹频段实用化设备的进程中取得重大突破。
太赫兹波因波长较无线电波缩短数千倍,其操控难度显著高于传统电磁波。而在通信领域,太赫兹波的精准调控具有关键意义——唯有将数据信号编码至太赫兹波载体,方可实现有效信息传输。为解决这一核心难题,研究团队创新提出基于纳米级工程设计的谐振器方案:通过在电容器两侧制备突出的石墨烯片(片体高度仅0.6微米),成功构建出纳米尺度的可调谐电容器。
图片来源:剑桥大学
剑桥大学卡文迪许实验室研究员弗拉迪斯拉夫·米哈伊洛夫(VladislavMikhailov)作为本项研究的负责人,以通俗类比阐释技术原理:“试想您如何收听老式模拟收音机——其接收的无线电波波长远大于太赫兹波,您通过转动旋钮调节设备内部的电容器,即可锁定目标电台频率。这种‘调谐’理念在各类电子设备中广泛应用,但由于太赫兹波长极小,传统调谐方案完全失效,我们必须构建全新技术概念以实现太赫兹频段的精准调谐。”
电容器的核心功能是存储与释放电能,通过参数调整改变其储电能力,可实现检测器、调制器等设备的频段调谐。通常而言,电磁波波长越小,所需电容器的尺寸也需相应缩小;但太赫兹频段对器件尺度的要求,已远超传统制造方法的极限。
此前,研究界曾尝试利用超材料开发太赫兹调制器:通过在超材料中嵌入石墨烯等二维导电材料,调控材料的光学响应以实现调制功能。传统方案中,石墨烯多被用作“可变电阻器”——谐振器内部的纳米级间隙与石墨烯形成短接,导致谐振效应减弱,进而改变辐射传输强度。“但这种方案效率极低,本质上只是造成共振‘崩溃’,而非主动调控。”米哈伊洛夫指出,“我们的创新点在于:摒弃‘抑制共振’的思路,改用石墨烯制备超薄可调谐电容器。这使得我们能够按需求‘移动’共振频率——如同在长笛上精准演奏不同旋律,实现对太赫兹波的主动调控。”
具体而言,剑桥大学卡文迪许实验室团队在超材料结构阵列的每个微型谐振器内部,均集成了石墨烯制备的超小型贴片。这些贴片宽度不足1微米,可作为纳米尺度的可调谐电容器发挥作用;同时,团队还对设备结构进行优化,将其背面设计为信号反射结构,进一步提升器件性能。
“通过这一设计,我们实现了超过四个数量级的调制深度。”剑桥大学卡文迪许实验室博士研究生夏若桥(音译)表示,其在攻读博士学位期间负责该类设备的搭建与测试工作,“这一数据已是目前太赫兹频段调制深度的最高纪录之一。”
更值得关注的是,该设备同时具备高响应速度——在太赫兹调制领域,“大调制深度”与“高响应速度”往往难以兼顾:传统方案中,实现大调制深度常伴随较低响应速度,而追求高速度则需牺牲调制深度。此次研发的新型设备,在30MHz的响应速度下,仍实现了超过99.99%的强度调制深度,突破了行业技术瓶颈。
“我们的设备性能显著优于现有多种同类调制器技术;且依托超材料的设计灵活性,我们可对器件结构进行调整,使其适用于整个太赫兹频段。”夏若桥补充道。
除当前性能突破外,研究团队认为该设计理念或将对未来多领域技术发展产生深远影响。“对于任何依赖谐振器的超材料器件,通过改变其纳米级间隙的设计,均可显著调控其光学响应,进而提升调制效率。”米哈伊洛夫强调,“我们此次提出的技术路径,可广泛应用于其他类型的超材料基调制器研发。”
目前,太赫兹技术虽仍处于发展初期,但其应用潜力正快速释放。剑桥大学卡文迪许实验室半导体物理研究组负责人大卫·里奇(DavidRitchie)指出:“太赫兹波在材料光谱分析、安全检测、制药研发、医疗诊断及太赫兹通信等领域均有广阔应用前景。我们当前开展的‘Teracom’项目,重点关注未来通信系统的技术研发;此次公布的研究成果,将成为推动下一代通信系统发展的关键一步,助力人类突破5G与6G技术局限,迈向更高阶的通信时代。”
-
【光学材料】单晶与多晶材料的特性差异及应用研究
在半导体器件、光伏能源、航空航天等关键工业与科研领域,晶体材料的微观结构直接决定其宏观性能与应用场景适配性。单晶与多晶作为晶体材料的两大核心类别,虽同属原子周期性排列形成的固体形态,但因内部晶格结构连续性的本质差异,在性能表现、制备工艺及产业应用中呈现显著分化。深入剖析二者的结构特征与性能规律,对学术研究的精准探索及工业生产的科学选材具有重要指导意义。
2025-10-21
-
摄像头滤光片技术解析与场景化选型策略
滤光片作为调控光谱输入的关键组件,直接决定成像质量能否契合人眼视觉规律或满足机器视觉的特定需求。其技术价值源于图像传感器(CMOS/CCD)与人类视觉系统的光谱响应差异——CMOS/CCD传感器可感知4001100nm的紫外至近红外波段,而人眼仅对400700nm的可见光敏感。若不加以干预,过量红外光会导致成像色彩失真、对比度降低及清晰度劣化。红外截止滤光片(IRCutFilter)通过精准筛选入射光谱,成为解决这一核心矛盾的技术支撑。
2025-10-21
-
南京邮电大学氮化镓基PCSEL专利解析:突破蓝光激光器技术瓶颈,助力高端应用发展
在蓝光激光器领域,材料选择与器件结构设计长期制约着其性能提升与产业化推进。2023年,南京邮电大学提出“一种氮化镓基光子晶体面发射蓝光激光器及制备方法”(专利号:CN116316063A)发明专利,通过创新包覆层材料体系与制备工艺,为实现低阈值、高效率的氮化镓基光子晶体面发射激光器(PCSEL)提供了关键技术方案,对激光雷达、激光显示及光通信等高端领域的技术升级具有重要推动作用。
2025-10-21
-
精密光学振动控制测试中的标准体系与实践路径
设备精度优化与光路校准是核心关注方向,而振动控制作为保障检测结果准确性的关键环节,常被忽视。即便微米级的微小振动,也可能导致高倍显微观测失真、光刻线宽偏差,甚至影响航空光学测量数据的可靠性。当检测精度要求达到微米级及以下时,振动控制从“优化项”转变为“必备条件”。本文将系统梳理精密光学测试中的振动控制标准、光学平台减震分级及选型要点,为相关实践提供专业参考。
2025-10-21