基于溅射沉积薄膜铌酸锂的RGB多路复用器:激光束扫描技术的突破性进展
激光束扫描技术已广泛应用于激光投影仪、超市条形码扫描仪等各类设备。该技术通过多路复用器将红、绿、蓝(RGB)激光束合并为一束,以处理更宽范围的信号。传统上,这一过程通过直接调制各激光器、借助开关控制其输出实现,但该方法存在速度较慢、能耗较高的局限。
东京电气硝子株式会社的研究人员开发了一种基于薄膜铌酸锂(TFLN)的RGB多路复用器,其具备更快的响应速度与更高的能效。铌酸锂因具有优异的电光、非线性光学及声光特性,在光子学领域应用广泛;而TFLN不仅在红外光调制器中得到广泛应用,还能轻松引导可见光。
通过溅射沉积技术制备的TFLNRGB多路复用器成功生成了所有基础颜色,这一成果彰显了其作为激光束扫描等显示器光源的广阔应用前景(图片由AtsushiShimura提供)。

通讯作者ShimuraAtsushi表示:“基于TFLN的RGB多路复用器对于激光束扫描技术实现更低功耗与更高分辨率至关重要,但此前尚未有相关演示,RGB多路复用器一直局限于基于玻璃的光子集成电路。”
这种长度仅为2.3毫米的多路复用器,通过物理气相沉积(“溅射”)技术沉积铌酸锂膜制造而成,随后经蚀刻形成用于引导激光的波导。该方法避免了通常所需的块状铌酸锂复杂键合过程,为大规模生产可扩展、成本效益高的紧凑型光电路提供了可行路径。
波导采用梯形横截面结构设计,以减少信号损失;同时,各段长度也经过调整以降低信号损耗。合束器通过精心设计的波导,将红色(638nm)、绿色(520nm)和蓝色(473nm)激光束有效组合。
研究人员通过调整每束光的强度,成功利用三种基色生成了青色、品红色、黄色等混合色,甚至白色光。这种精确的色彩控制是激光束扫描基础显示所必需的。
尽管此项研究成果前景向好,但也明确了未来需攻克的重要挑战。关键问题之一是,溅射沉积的TFLN晶体质量低于块状铌酸锂,这会影响其在较短波长下的性能。例如,在473nm波长下,测得的光学损耗为7至10dB,显著高于3.1dB的模拟值。这种损耗主要源于波导中的表面粗糙度,因其会散射光线并降低整体效率。
Shimura指出:“优化制造工艺以生产更光滑的表面,是充分发挥TFLN在可见光光子学及相关应用中潜力的关键步骤。”
尽管存在上述限制,该研究成果仍为开发未来可见光激光束扫描系统中可扩展、更快且更节能的复用器奠定了基础。
Shimura表示:“这项工作证实了被动RGB复用器的可行性,为开发主动光子集成电路迈出了重要的第一步。”
该研究成果已发表于《AdvancedPhotonicsNexus》期刊。
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
-
大曲率半径平凸透镜定心的可靠解决方案
在现代光学制造领域,平凸透镜作为核心光学元件,广泛应用于激光技术、天文观测、精密仪器等高端场景。其中,曲率半径达几米级的大曲率半径平凸透镜,因表面接近平面、光学特性敏感,其定心工艺(即保证光轴与参考轴精准对齐)成为行业技术难点。而德国TRIOPTICSGmbH研发、欧光科技引入的OptiCentric®系列中心偏差测量仪,凭借其卓越的性能设计与广泛的适配能力,为这类特殊镜片的定心提供了可行路径。
2025-12-30
-
什么是光学像差?光学像差的原理、分类与校正技术前沿
在光学系统的发展历程中,完美成像始终是科研工作者与工程技术人员追求的核心目标。然而,实际光学系统与理想高斯光学之间存在的固有差异——光学像差,成为阻碍这一目标实现的关键因素。作为光在真实介质中传播特性的直接体现,光学像差不仅深刻影响成像质量,其背后蕴含的物理机制与校正技术的演进,更构成了现代光学领域的重要研究脉络。
2025-12-30
-
各向异性材料中的双折射与偏振现象及应用
光学各向异性材料因原子排列的非对称性,展现出独特的双折射与偏振特性,成为现代光学技术中不可或缺的核心材料。本文系统阐述双折射与偏振的物理本质,以典型晶体为研究对象,深入分析其光学行为、波前传播规律,并介绍基于双折射效应的偏振器设计与应用,为相关领域的研究与工程实践提供理论参考。
2025-12-29
