突破S波段激光调谐限制:掺铥氟碲酸盐光纤激光器研究获新进展
在光通信、光学传感、医学成像等领域,S波段(1460-1530nm)激光因其独特的传输特性和应用潜力,一直是科研人员关注的焦点。近期,吉林大学贾志旭、秦冠仕教授团队联合国内外研究者,在S波段光纤激光器领域取得重要突破——他们成功研发出一种宽调谐环形腔掺铥氟碲酸盐光纤激光器,其可调谐范围几乎覆盖整个S波段,相关成果发表于国际知名期刊《OpticsLetters》。

稀土掺杂光纤:激光技术的“核心引擎”
稀土离子掺杂光纤是构建高性能光纤激光器和放大器的核心材料。其中,碲酸盐光纤因出色的光学特性,在中红外激光、C+L波段光放大等领域已展现出巨大潜力。例如,掺铒碲酸盐光纤可实现超100nm的增益带宽,掺铥碲酸盐光纤则为中红外2μm以上波段激光提供了优质增益介质。
然而,在S波段激光领域,传统掺铥氟化物光纤的增益带宽有限,且早期掺铥碲酸盐光纤放大器的相对增益仅约11dB,难以满足实际应用需求。如何突破S波段激光的调谐范围和输出性能限制,成为该领域的关键挑战。
创新制备与结构设计:解锁宽调谐能力
研究团队采用棒-管法制备了掺铥氟碲酸盐光纤(TDFTF),这一工艺利用纤芯与包层玻璃在玻璃化转变温度和结晶温度间约100℃的温差优势,确保了光纤的高质量制备。所制光纤为阶梯折射率结构,芯径约4.1μm,在1480nm处的数值孔径为0.24,背景损耗低至0.4dB/m(980nm),为高效激光输出奠定了基础。
为实现宽调谐激光,团队设计了环形腔结构:将2.1米长的掺铥氟碲酸盐光纤作为增益介质,两端通过直接熔接与石英光纤连接(熔接损耗经优化后显著降低);腔内插入可调谐光学带通滤波器,并采用1400nm与1570nm双波长泵浦技术。
双波长泵浦的巧妙之处在于,通过基态吸收与激发态吸收的协同作用,使铥离子从基态(³H₆)逐步跃迁到高能级(³H₄),最终通过³H₄→³F₄跃迁实现S波段光发射。这种设计有效提升了能量转化效率,为宽范围调谐提供了能量保障。
突破性成果:覆盖全S波段的可调谐与多波长输出
实验结果显示,该激光器在1400nm(1820mW)和1570nm(150mW)泵浦下,通过调节腔内可调谐滤波器,实现了1460-1526nm的连续可调谐激光输出,几乎覆盖整个S波段,边模抑制比超过40dB,输出功率在1460-1524nm范围内均大于11mW。
更值得关注的是,当移除腔内可调谐滤波器后,激光器实现了1500nm与1901nm的自由运行多波长输出。通过调控泵浦功率,可灵活切换单波长与多波长模式:低功率1400nm泵浦时,1901nm激光占优;增加1400nm泵浦功率至940mW以上,仅保留1500nm激光输出。这种特性为太赫兹信号产生、多参数光学传感等场景提供了多样化选择。
应用前景:S波段激光技术的新基石
该研究首次证实了掺铥氟碲酸盐光纤作为S波段增益介质的巨大潜力。其宽调谐特性可满足光通信中波分复用技术对宽波段光源的需求,多波长输出能力则为高精度传感、医学成像等领域提供了新型工具。
未来,通过进一步降低环形腔损耗(如优化熔接工艺、改进滤波器性能),该激光器的调谐范围和输出功率有望进一步提升。吉林大学团队的这项成果,不仅为S波段光纤激光器的发展开辟了新路径,也为稀土掺杂碲酸盐光纤在更多波段的应用提供了重要参考。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
