【前言资讯】外国实验团队联合实验在薄腔优化用于径向流领域取得重大突破
2025年8月5日,新墨西哥州洛斯阿拉莫斯讯——来自洛斯阿拉莫斯国家实验室(LANL)和劳伦斯利弗莫尔国家实验室(LLNL)的联合研究团队,在国家点火设施(NIF)的最新点火实验中取得了重大进展,成功实施了“薄腔优化用于径向流(THOR)”窗口诊断工具。这一成果为核聚变研究领域带来了新的曙光,有望推动相关技术迈向新的高度。
在此次实验中,研究团队成功产生了2.4±0.09MJ的能量,并成功创建了一个被称为“燃烧等离子体”的自维持反馈循环。这一成果的取得,标志着科学家们在核聚变研究方面又迈出了坚实的一步。“燃烧等离子体”的出现,意味着核聚变反应能够在一定程度上自我维持,为实现可持续的核聚变能源提供了关键支撑。
THOR窗口系统利用了LLNL的改良点火平台,能够产生极端X射线输出。这些X射线将被用于轰击测试材料,帮助科学家深入研究辐射在材料中的流动方式,以及材料对X射线能量的吸收情况。这对于理解核聚变反应中的物理过程,以及开发适用于核聚变反应堆的材料具有重要意义。
THOR实验采用了由LANL设计的新型hohlarum,该设计基于LLNL的点火方案,但创新性地加入了允许部分高通量X射线逃逸的窗口。这些逃逸的X射线为研究材料与高温、高辐射水平的相互作用提供了宝贵的实验条件。然而,这一设计也带来了巨大的挑战,因为在hohlaum中添加窗口可能会导致能量损失或压缩对称性受损,进而影响聚变点火的实现。
“点燃胶囊的内爆过程对能量损失或干扰极为敏感,任何细微的变化都可能阻止点火的发生,从而无法产生我们所需的X射线通量,”洛斯阿拉莫斯国家实验室(LANL)的物理学家布莱恩・海因斯(BrianHaines)解释道。海因斯不仅参与了实验设计,还对x-RAGE(LANL用于模拟hohlraum和胶囊内爆的关键计算机代码)做出了重要贡献。
在NIF聚变实验中,激光被引入一个几毫米长宽、表面涂金的圆柱体容器——绝热罩内。绝热罩中放置着一个极小的氘和氚胶囊,这便是核聚变的燃料。激光击中绝热罩内壁后,会产生均匀的X射线浴,驱动内胶囊对称崩溃,进而实现聚变点火。而THOR实验中的特殊设计,使得科学家们能够在实现点火的同时,利用逃逸的X射线开展更多关于材料特性的研究。
“这次实验是验证高保真模拟的重要一步,也证明了即使对THOR平台进行改装,依然能够实现点火规模的性能,”THOR活动负责人瑞安・莱斯特(RyanLester)表示。此次实验的成功,为后续研究提供了重要的参考依据,也增强了科学家们在核聚变研究领域继续探索的信心。
目前,研究团队已经成功使用THOR设计实现了点火。接下来,他们将探索提高窗户透明度的可能性,并设计与THOR窗户配套的实验。随着研究的深入,我们有理由期待更多关于核聚变的奥秘被揭开,为未来的能源发展带来新的希望。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30