【前言资讯】外国实验团队联合实验在薄腔优化用于径向流领域取得重大突破
2025年8月5日,新墨西哥州洛斯阿拉莫斯讯——来自洛斯阿拉莫斯国家实验室(LANL)和劳伦斯利弗莫尔国家实验室(LLNL)的联合研究团队,在国家点火设施(NIF)的最新点火实验中取得了重大进展,成功实施了“薄腔优化用于径向流(THOR)”窗口诊断工具。这一成果为核聚变研究领域带来了新的曙光,有望推动相关技术迈向新的高度。
在此次实验中,研究团队成功产生了2.4±0.09MJ的能量,并成功创建了一个被称为“燃烧等离子体”的自维持反馈循环。这一成果的取得,标志着科学家们在核聚变研究方面又迈出了坚实的一步。“燃烧等离子体”的出现,意味着核聚变反应能够在一定程度上自我维持,为实现可持续的核聚变能源提供了关键支撑。
THOR窗口系统利用了LLNL的改良点火平台,能够产生极端X射线输出。这些X射线将被用于轰击测试材料,帮助科学家深入研究辐射在材料中的流动方式,以及材料对X射线能量的吸收情况。这对于理解核聚变反应中的物理过程,以及开发适用于核聚变反应堆的材料具有重要意义。
THOR实验采用了由LANL设计的新型hohlarum,该设计基于LLNL的点火方案,但创新性地加入了允许部分高通量X射线逃逸的窗口。这些逃逸的X射线为研究材料与高温、高辐射水平的相互作用提供了宝贵的实验条件。然而,这一设计也带来了巨大的挑战,因为在hohlaum中添加窗口可能会导致能量损失或压缩对称性受损,进而影响聚变点火的实现。
“点燃胶囊的内爆过程对能量损失或干扰极为敏感,任何细微的变化都可能阻止点火的发生,从而无法产生我们所需的X射线通量,”洛斯阿拉莫斯国家实验室(LANL)的物理学家布莱恩・海因斯(BrianHaines)解释道。海因斯不仅参与了实验设计,还对x-RAGE(LANL用于模拟hohlraum和胶囊内爆的关键计算机代码)做出了重要贡献。
在NIF聚变实验中,激光被引入一个几毫米长宽、表面涂金的圆柱体容器——绝热罩内。绝热罩中放置着一个极小的氘和氚胶囊,这便是核聚变的燃料。激光击中绝热罩内壁后,会产生均匀的X射线浴,驱动内胶囊对称崩溃,进而实现聚变点火。而THOR实验中的特殊设计,使得科学家们能够在实现点火的同时,利用逃逸的X射线开展更多关于材料特性的研究。
“这次实验是验证高保真模拟的重要一步,也证明了即使对THOR平台进行改装,依然能够实现点火规模的性能,”THOR活动负责人瑞安・莱斯特(RyanLester)表示。此次实验的成功,为后续研究提供了重要的参考依据,也增强了科学家们在核聚变研究领域继续探索的信心。
目前,研究团队已经成功使用THOR设计实现了点火。接下来,他们将探索提高窗户透明度的可能性,并设计与THOR窗户配套的实验。随着研究的深入,我们有理由期待更多关于核聚变的奥秘被揭开,为未来的能源发展带来新的希望。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15