【光学前沿】首尔国立大学与首尔大学合作开发自供能深紫外成像技术,基于各向异性传导单晶镓氧化物膜

    近日,首尔国立大学与首尔大学的联合研究团队在国际知名期刊《ACSNano》上发表了一项突破性成果,成功开发出基于各向异性传导的自供能深紫外(UVC,波长200-280nm)成像技术。该技术以单晶镓氧化物膜为核心,有效解决了传统深紫外探测器的诸多局限,为军事、民用等领域的深紫外探测应用开辟了新路径。

 

首尔国立大学与首尔大学合作开发自供能深紫外成像技术,基于各向异性传导单晶镓氧化物膜


    一.深紫外探测需求迫切,传统技术瓶颈待破
    深紫外光因被平流层臭氧层完全吸收,在地球表面难以自然获取,但其在导弹制导、火焰探测、通信等军事和民用领域具有不可替代的应用价值。然而,传统UVC探测器依赖光电倍增管或增强型硅光电二极管,普遍存在易碎、高功耗、需复杂光学滤波器等问题,严重限制了其应用场景。
    为突破这些限制,科研界将目光投向超宽带隙(带隙大于4.0eV)材料,其中β-氧化镓(β-Ga₂O₃)因带隙约4.8eV、光电子性能优异且化学和热稳定性高,成为极具潜力的UVC探测材料。但β-Ga₂O₃的发展长期受限于高成本衬底,且其各向异性热导率阻碍了异质集成,如何在异质衬底上生长高质量β-Ga₂O₃薄膜,成为高性能UVC探测器研发的关键难题。


    二.核心突破:垂直传导结构破解载流子传输难题
    针对上述挑战,首尔国立大学与首尔大学团队提出了创新性解决方案:通过外延层转移技术,在蓝宝石纳米膜模板上外延生长硅掺杂的β-Ga₂O₃薄膜,构建垂直传导结构。
    传统横向探测器因β-Ga₂O₃的各向异性对称性,载流子传输效率低下。而新开发的垂直传导结构,借助外延层转移技术实现了高效载流子输运,从根本上解决了这一问题。更重要的是,该探测器无需外部偏压即可工作,实现了“自供能”特性,大幅降低了功耗和系统复杂度。


    三.技术细节:材料与结构设计驱动性能跃升
    研究团队通过系列创新设计,实现了探测器性能的全面提升:在材料层面,采用硅掺杂的β-Ga₂O₃薄膜,兼顾了材料的光响应特性与导电性;在结构层面,利用蓝宝石纳米膜模板外延生长,并通过外延层转移技术构建垂直结构,最大化减少载流子传输损耗;在阵列设计上,成功制备出5×5自供能UVC成像光电探测器阵列,可实现高对比度成像。
    性能测试显示,该探测器在响应度、探测度、响应时间等关键参数上均优于传统横向探测器,且暗电流极低,在无紫外光照射时几乎无电流输出,光照下则能快速产生稳定光电流,成像清晰度与对比度表现突出。


    四.应用前景广阔,技术理念具借鉴意义
    该研究不仅为高性能UVC探测器的制造提供了可行方案,其技术理念还具有广泛的借鉴价值。外延层转移技术为高质量单晶薄膜的异质集成提供了新思路,垂直结构设计对提升载流子输运效率的方法,可推广至其他光电器件的研发中。
    未来,基于该技术的自供能深紫外成像探测器有望在导弹制导、火灾预警、环境监测等领域实现应用,推动深紫外探测技术向低功耗、小型化、高可靠性方向发展。

创建时间:2025-07-07 13:46
浏览量:0

▍最新资讯