硫系光纤拉曼激光器新突破,用菲涅耳反射实现中红外激光高效调谐
在光谱检测、气体分析和军事技术等领域,2微米以上的激光技术一直是研究热点。近期,宁波大学团队在《Optics Letters》发表了一项重要成果:他们利用光纤端面的自然反射现象,在硫系玻璃光纤中实现了高效可调的拉曼激光输出,为中红外激光应用开辟了新方向。

传统激光材料的局限与硫系玻璃的优势
过去,2微米以上的激光主要通过掺稀土元素(如铥、钬)的光纤实现,但这类激光器存在波长覆盖不连续的问题。另一种方案是利用拉曼散射原理,但传统的二氧化硅和氟化物光纤有明显不足:前者在长波长损耗大,后者虽然能传输到6微米,但拉曼增益太低,导致激光器效率差、功率低。
硫系玻璃的出现改变了这一局面。以硫化砷(As₂S₃)为代表的硫系材料,不仅能透过中红外光,而且拉曼增益比传统材料高几十到几百倍。此前已有研究用硫系光纤实现3.77微米的激光,但这类技术依赖特殊的反射镜或光栅,限制了波长调节范围,也让系统变得复杂。
创新设计:用光纤端面当“天然镜子”
宁波大学团队的核心创新很巧妙:他们发现硫系光纤的端面本身就能当反射镜。当激光从光纤射出时,端面会自然反射约17%的光,这就像在光纤两端形成了一对“天然镜子”,构成了光学谐振腔(FP腔)。
这种设计的好处是不需要额外安装反射镜或光栅,大大简化了系统。当泵浦光功率足够高时,拉曼散射产生的新波长光会在这对“天然镜子”间来回反射放大,最终形成稳定的激光输出。研究团队通过计算机模拟优化了光纤长度和泵浦功率,发现3米长的As₂S₃光纤在16瓦泵浦功率下效果最好。
实验成果:高效宽范围波长调节
实验中,团队用2000纳米的脉冲激光作为泵浦源,经过放大后注入3米长的As₂S₃光纤。关键在于:
整个系统全光纤化,仅用端面反射构建谐振腔,结构紧凑
通过调节前端的滤波器,激光波长能在21002186纳米范围内连续变化,覆盖86纳米的宽带,这是同类技术中首次实现如此宽的纳秒脉冲调谐
测试显示:
在2148纳米处,激光峰值功率达到2.9瓦,能量转换效率高达43%,创硫系光纤激光器新纪录
输出的激光脉冲宽度674纳秒,功率稳定性误差仅1.71%
虽然脉冲因光纤特性略有展宽,但可通过优化设计进一步改善
应用前景:中红外激光的多领域潜力
这种新型激光器的最大优势是“无波长限制”的设计,摆脱了传统技术对特殊光学元件的依赖,在这些领域有重要应用:
环境监测:23微米波长能精准检测二氧化碳、甲烷等气体,用于大气污染实时分析
医疗诊断:中红外光与生物组织的水吸收特性匹配,可用于无创血糖检测、癌细胞早期识别
国防科技:适合红外对抗、导弹制导等场景,紧凑的体积便于装备集成
研究团队还指出,若将光纤长度缩短到几十厘米,有望在不损伤材料的前提下实现10瓦级功率输出,进一步拓展应用场景。这种“极简”设计为中红外激光设备的小型化、实用化提供了全新思路。
这项研究不仅在技术指标上实现突破,更重要的是提供了一种“返璞归真”的创新思路——利用材料自身特性解决复杂问题。随着硫系光纤制备技术的成熟,这类高效可调的拉曼激光器有望快速从实验室走向市场,推动环境监测、医疗设备、国防科技等领域的技术升级,在中红外激光这片“光谱蓝海”中开辟出广阔的应用空间。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
