硫系光纤拉曼激光器新突破,用菲涅耳反射实现中红外激光高效调谐
在光谱检测、气体分析和军事技术等领域,2微米以上的激光技术一直是研究热点。近期,宁波大学团队在《Optics Letters》发表了一项重要成果:他们利用光纤端面的自然反射现象,在硫系玻璃光纤中实现了高效可调的拉曼激光输出,为中红外激光应用开辟了新方向。

传统激光材料的局限与硫系玻璃的优势
过去,2微米以上的激光主要通过掺稀土元素(如铥、钬)的光纤实现,但这类激光器存在波长覆盖不连续的问题。另一种方案是利用拉曼散射原理,但传统的二氧化硅和氟化物光纤有明显不足:前者在长波长损耗大,后者虽然能传输到6微米,但拉曼增益太低,导致激光器效率差、功率低。
硫系玻璃的出现改变了这一局面。以硫化砷(As₂S₃)为代表的硫系材料,不仅能透过中红外光,而且拉曼增益比传统材料高几十到几百倍。此前已有研究用硫系光纤实现3.77微米的激光,但这类技术依赖特殊的反射镜或光栅,限制了波长调节范围,也让系统变得复杂。
创新设计:用光纤端面当“天然镜子”
宁波大学团队的核心创新很巧妙:他们发现硫系光纤的端面本身就能当反射镜。当激光从光纤射出时,端面会自然反射约17%的光,这就像在光纤两端形成了一对“天然镜子”,构成了光学谐振腔(FP腔)。
这种设计的好处是不需要额外安装反射镜或光栅,大大简化了系统。当泵浦光功率足够高时,拉曼散射产生的新波长光会在这对“天然镜子”间来回反射放大,最终形成稳定的激光输出。研究团队通过计算机模拟优化了光纤长度和泵浦功率,发现3米长的As₂S₃光纤在16瓦泵浦功率下效果最好。
实验成果:高效宽范围波长调节
实验中,团队用2000纳米的脉冲激光作为泵浦源,经过放大后注入3米长的As₂S₃光纤。关键在于:
整个系统全光纤化,仅用端面反射构建谐振腔,结构紧凑
通过调节前端的滤波器,激光波长能在21002186纳米范围内连续变化,覆盖86纳米的宽带,这是同类技术中首次实现如此宽的纳秒脉冲调谐
测试显示:
在2148纳米处,激光峰值功率达到2.9瓦,能量转换效率高达43%,创硫系光纤激光器新纪录
输出的激光脉冲宽度674纳秒,功率稳定性误差仅1.71%
虽然脉冲因光纤特性略有展宽,但可通过优化设计进一步改善
应用前景:中红外激光的多领域潜力
这种新型激光器的最大优势是“无波长限制”的设计,摆脱了传统技术对特殊光学元件的依赖,在这些领域有重要应用:
环境监测:23微米波长能精准检测二氧化碳、甲烷等气体,用于大气污染实时分析
医疗诊断:中红外光与生物组织的水吸收特性匹配,可用于无创血糖检测、癌细胞早期识别
国防科技:适合红外对抗、导弹制导等场景,紧凑的体积便于装备集成
研究团队还指出,若将光纤长度缩短到几十厘米,有望在不损伤材料的前提下实现10瓦级功率输出,进一步拓展应用场景。这种“极简”设计为中红外激光设备的小型化、实用化提供了全新思路。
这项研究不仅在技术指标上实现突破,更重要的是提供了一种“返璞归真”的创新思路——利用材料自身特性解决复杂问题。随着硫系光纤制备技术的成熟,这类高效可调的拉曼激光器有望快速从实验室走向市场,推动环境监测、医疗设备、国防科技等领域的技术升级,在中红外激光这片“光谱蓝海”中开辟出广阔的应用空间。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
