硫系光纤拉曼激光器新突破,用菲涅耳反射实现中红外激光高效调谐
在光谱检测、气体分析和军事技术等领域,2微米以上的激光技术一直是研究热点。近期,宁波大学团队在《Optics Letters》发表了一项重要成果:他们利用光纤端面的自然反射现象,在硫系玻璃光纤中实现了高效可调的拉曼激光输出,为中红外激光应用开辟了新方向。

传统激光材料的局限与硫系玻璃的优势
过去,2微米以上的激光主要通过掺稀土元素(如铥、钬)的光纤实现,但这类激光器存在波长覆盖不连续的问题。另一种方案是利用拉曼散射原理,但传统的二氧化硅和氟化物光纤有明显不足:前者在长波长损耗大,后者虽然能传输到6微米,但拉曼增益太低,导致激光器效率差、功率低。
硫系玻璃的出现改变了这一局面。以硫化砷(As₂S₃)为代表的硫系材料,不仅能透过中红外光,而且拉曼增益比传统材料高几十到几百倍。此前已有研究用硫系光纤实现3.77微米的激光,但这类技术依赖特殊的反射镜或光栅,限制了波长调节范围,也让系统变得复杂。
创新设计:用光纤端面当“天然镜子”
宁波大学团队的核心创新很巧妙:他们发现硫系光纤的端面本身就能当反射镜。当激光从光纤射出时,端面会自然反射约17%的光,这就像在光纤两端形成了一对“天然镜子”,构成了光学谐振腔(FP腔)。
这种设计的好处是不需要额外安装反射镜或光栅,大大简化了系统。当泵浦光功率足够高时,拉曼散射产生的新波长光会在这对“天然镜子”间来回反射放大,最终形成稳定的激光输出。研究团队通过计算机模拟优化了光纤长度和泵浦功率,发现3米长的As₂S₃光纤在16瓦泵浦功率下效果最好。
实验成果:高效宽范围波长调节
实验中,团队用2000纳米的脉冲激光作为泵浦源,经过放大后注入3米长的As₂S₃光纤。关键在于:
整个系统全光纤化,仅用端面反射构建谐振腔,结构紧凑
通过调节前端的滤波器,激光波长能在21002186纳米范围内连续变化,覆盖86纳米的宽带,这是同类技术中首次实现如此宽的纳秒脉冲调谐
测试显示:
在2148纳米处,激光峰值功率达到2.9瓦,能量转换效率高达43%,创硫系光纤激光器新纪录
输出的激光脉冲宽度674纳秒,功率稳定性误差仅1.71%
虽然脉冲因光纤特性略有展宽,但可通过优化设计进一步改善
应用前景:中红外激光的多领域潜力
这种新型激光器的最大优势是“无波长限制”的设计,摆脱了传统技术对特殊光学元件的依赖,在这些领域有重要应用:
环境监测:23微米波长能精准检测二氧化碳、甲烷等气体,用于大气污染实时分析
医疗诊断:中红外光与生物组织的水吸收特性匹配,可用于无创血糖检测、癌细胞早期识别
国防科技:适合红外对抗、导弹制导等场景,紧凑的体积便于装备集成
研究团队还指出,若将光纤长度缩短到几十厘米,有望在不损伤材料的前提下实现10瓦级功率输出,进一步拓展应用场景。这种“极简”设计为中红外激光设备的小型化、实用化提供了全新思路。
这项研究不仅在技术指标上实现突破,更重要的是提供了一种“返璞归真”的创新思路——利用材料自身特性解决复杂问题。随着硫系光纤制备技术的成熟,这类高效可调的拉曼激光器有望快速从实验室走向市场,推动环境监测、医疗设备、国防科技等领域的技术升级,在中红外激光这片“光谱蓝海”中开辟出广阔的应用空间。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
