硫系光纤拉曼激光器新突破,用菲涅耳反射实现中红外激光高效调谐

    在光谱检测、气体分析和军事技术等领域,2微米以上的激光技术一直是研究热点。近期,宁波大学团队在《Optics Letters》发表了一项重要成果:他们利用光纤端面的自然反射现象,在硫系玻璃光纤中实现了高效可调的拉曼激光输出,为中红外激光应用开辟了新方向。

 

硫系光纤拉曼激光器新突破,用菲涅耳反射实现中红外激光高效调谐


    传统激光材料的局限与硫系玻璃的优势
    过去,2微米以上的激光主要通过掺稀土元素(如铥、钬)的光纤实现,但这类激光器存在波长覆盖不连续的问题。另一种方案是利用拉曼散射原理,但传统的二氧化硅和氟化物光纤有明显不足:前者在长波长损耗大,后者虽然能传输到6微米,但拉曼增益太低,导致激光器效率差、功率低。
    硫系玻璃的出现改变了这一局面。以硫化砷(As₂S₃)为代表的硫系材料,不仅能透过中红外光,而且拉曼增益比传统材料高几十到几百倍。此前已有研究用硫系光纤实现3.77微米的激光,但这类技术依赖特殊的反射镜或光栅,限制了波长调节范围,也让系统变得复杂。


    创新设计:用光纤端面当“天然镜子”
    宁波大学团队的核心创新很巧妙:他们发现硫系光纤的端面本身就能当反射镜。当激光从光纤射出时,端面会自然反射约17%的光,这就像在光纤两端形成了一对“天然镜子”,构成了光学谐振腔(FP腔)。
    这种设计的好处是不需要额外安装反射镜或光栅,大大简化了系统。当泵浦光功率足够高时,拉曼散射产生的新波长光会在这对“天然镜子”间来回反射放大,最终形成稳定的激光输出。研究团队通过计算机模拟优化了光纤长度和泵浦功率,发现3米长的As₂S₃光纤在16瓦泵浦功率下效果最好。


    实验成果:高效宽范围波长调节
    实验中,团队用2000纳米的脉冲激光作为泵浦源,经过放大后注入3米长的As₂S₃光纤。关键在于:
    整个系统全光纤化,仅用端面反射构建谐振腔,结构紧凑
    通过调节前端的滤波器,激光波长能在21002186纳米范围内连续变化,覆盖86纳米的宽带,这是同类技术中首次实现如此宽的纳秒脉冲调谐
    测试显示:
    在2148纳米处,激光峰值功率达到2.9瓦,能量转换效率高达43%,创硫系光纤激光器新纪录
    输出的激光脉冲宽度674纳秒,功率稳定性误差仅1.71%
    虽然脉冲因光纤特性略有展宽,但可通过优化设计进一步改善


    应用前景:中红外激光的多领域潜力
    这种新型激光器的最大优势是“无波长限制”的设计,摆脱了传统技术对特殊光学元件的依赖,在这些领域有重要应用:
    环境监测:23微米波长能精准检测二氧化碳、甲烷等气体,用于大气污染实时分析
    医疗诊断:中红外光与生物组织的水吸收特性匹配,可用于无创血糖检测、癌细胞早期识别
    国防科技:适合红外对抗、导弹制导等场景,紧凑的体积便于装备集成
    研究团队还指出,若将光纤长度缩短到几十厘米,有望在不损伤材料的前提下实现10瓦级功率输出,进一步拓展应用场景。这种“极简”设计为中红外激光设备的小型化、实用化提供了全新思路。


    这项研究不仅在技术指标上实现突破,更重要的是提供了一种“返璞归真”的创新思路——利用材料自身特性解决复杂问题。随着硫系光纤制备技术的成熟,这类高效可调的拉曼激光器有望快速从实验室走向市场,推动环境监测、医疗设备、国防科技等领域的技术升级,在中红外激光这片“光谱蓝海”中开辟出广阔的应用空间。

创建时间:2025-06-27 09:20
浏览量:0

▍最新资讯