突破光学成像衍射极限:南洋理工与南安普顿大学发布OpticalNet数据集,开启AI赋能科学新范式
在科学探索的微观领域,光学成像技术如同人类窥视神秘世界的“眼睛”,然而衍射极限这一“枷锁”却长期束缚着其分辨率的提升。当传统光学显微镜在200-250纳米尺度前止步时,南洋理工大学与南安普顿大学的研究团队在CVPR2025上带来了突破性进展——他们提出的OpticalNet数据集与基准测试,为光学成像突破衍射极限开辟了全新路径。

衍射极限:光学成像的“阿喀琉斯之踵”
光的波动性导致的衍射现象,如同给光学成像戴上了“紧箍咒”。当光与亚波长结构相互作用时,理想点光源会在成像平面衍射成艾里斑,相邻衍射斑间距低于0.61λ/NA时便无法分辨,这使得传统光学显微镜在观测冠状病毒(小于200纳米)等亚波长物体时“力不从心”。
尽管电子显微镜能实现原子级分辨率,但其复杂的样品制备、真空环境要求以及对活体生物的辐射损伤,使其在实时成像领域难以施展。超分辨率荧光显微镜虽获诺奖认可,却依赖侵入性荧光标记,背离了光学成像非侵入性的本质优势。能否仅用传统显微镜“看透”衍射极限之外的世界,成为光学领域的核心挑战。
OpticalNet:以模块化思维构建亚波长成像“基石”
面对亚波长数据采集的世界级难题,研究团队创新性地提出“构建模块”概念。他们将任意形状的亚波长物体分解为n×n网格的基本单元,每个单元由小于衍射极限的正方形组成,如同用“纳米积木”搭建复杂结构。
在数据采集中,团队采用高精度聚焦离子束(FIB)技术制备样品,搭配定制显微镜系统与声学腔振动隔离装置,确保纳米级精度。为验证概念,他们设计了两大测试集:“光”测试集用于评估任意形状物体的成像能力,“西门子星”(SS)测试集则聚焦于旋转与尺寸变化的泛化性能。
深度学习破局:Transformer重构光学成像范式
研究团队将问题定义为“衍射图像-物体图像”的端到端翻译任务,通过对比ResUNet、ResNet、AttU-Net等主流模型,发现Transformer架构展现出显著优势。在3×3模块数据集上,Transformer的准确率达80.31%,F1分数76.33%,远超ResNet-34的75.01%与76.33%。
可视化结果更直观呈现了Transformer的优势:其对“西门子星”辐条的解析更为锐利,能保留“光”符号的细微曲线,而ResNet-34的预测结果则伴随明显噪声。这表明,Transformer处理全局信息的能力使其在环境噪声抑制方面更具优势。
从实验室到产业:AI+光学的万亿市场遐想
OpticalNet的意义不仅在于学术突破,更在于打开了跨学科合作的大门。在生物医学领域,其非侵入性、实时成像特性为SARS-CoV-2病毒动态观测、巨噬细胞复极化研究提供了新工具;半导体质量控制中,亚波长尺度的缺陷检测将成为可能;而在材料科学领域,纳米级结构的原位观测或将推动新型功能材料的研发。
研究团队开放的模拟代码与数据集,正吸引着视觉算法与光学科学领域的研究者共同探索。当AI的“算力”遇上光学的“眼力”,这场跨学科的碰撞或许将重塑微观世界的认知边界,正如论文作者所言:“这不仅是数据集的突破,更是‘人工智能助力科学’新范式的起点。”
从列文虎克的简易显微镜到OpticalNet的亚波长成像,人类探索微观世界的历程始终伴随着技术瓶颈与创新突破的博弈。OpticalNet的出现,不仅打破了衍射极限的物理禁锢,更揭示了一个真理:当不同学科的智慧在交叉领域碰撞,科学的边界将不断拓展,而这,或许正是基础研究最动人的魅力所在。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
